Method Development for Watershed Sediment Budgets to Support the CHIA/PHC Process: A Focus on Sediment Modeling for Estimating Sediment Loads

US Department of Interior, Office of Surface Mining 2007 Applied Science Program

University of Tennessee - Knoxville Department of Civil and Environmental Engineering

July 2010 Appendices

Method Development for Watershed Sediment Budgets to Support the CHIA/PHC Process: A Focus on Sediment Modeling for Estimating Sediment Loads

USDoI Office of Surface Mining Applied Science Program Grant Control # S07AP12477

Report Submitted to:

U.S. Department of Interior, Office of Surface Mining Appalachian Region, Knoxville Field Office, Knoxville, Tennessee

KFO Director: Earl D. Brady, Jr. OSM COR: Richard Mann

Report Prepared by:

University of Tennessee - Knoxville Department of Civil and Environmental Engineering

Project Investigators: Dr. John S. Schwartz and Dr. Eric C. Drumm

Graduate Students: M. Patrick Massey, Daniel Johnson Patrick White; and William Cantrell

Final Draft Report: Appendices Document

July 2010

Draft Revisions: February 2010 Original Draft: December 2009

Appendices: Table of Contents

Page

Appendix A: Rapid Geomorphic Assessment (RGA) Field Forms	A-11
Appendix B: Uplands Sediment Samples: Particle Size Distributions	A-14
Appendix C: AnnAGNPS Model Calibration Results	A-21
Appendix D: ConCEPTS Model: Data Input	A-51
Appendix E: ConCEPTS Model: Data Output Figures	A-154
Appendix F: Statistical Correlations Between AnnAGNPS Model Output and	
Streambed Fine Sediment	A-205

Main Document Separate

		Page
A.1	Channel Stability Ranking Scheme	A-12
A.2	Channel Stability Pebble Count Form	A-13
B .1	Particle (Grain) Size Distribution for Brimstone stream site BR-1	A-15
B.2	Particle (Grain) Size Distribution for Brimstone stream site BR-2.	A-15
B. 3	Particle (Grain) Size Distribution for Brimstone stream site BR-3.	A-16
B.4	Particle (Grain) Size Distribution for Brimstone stream site BR-4.	A-16
B.5	Particle (Grain) Size Distribution for Montgomery stream site MF-1.	A-17
B.6	Particle (Grain) Size Distribution for Brimstone stream site MF-2	A-17
B. 7	Particle (Grain) Size Distribution for Brimstone stream site MF-3	A-18
B. 8	Particle (Grain) Size Distribution for Brimstone stream site MF-4	A-18
B.9	Particle (Grain) Size Distribution for Smokey stream site SC-1	A-19
B .10	Particle (Grain) Size Distribution for Smokey stream site SC-2.	A-19
B .11	Particle (Grain) Size Distribution for Smokey stream site SC-3	A-20
B.12	Particle (Grain) Size Distribution for Smokey stream site SC-4.	A-20
~ .		
C.1	Brimstone Creek subwatershed a) land use characterization in 2006 and b) land	
	use types per AnnAGNPS model flow cell	A-23
C.2	Ligias Fork subwatershed a) land use characterization in 2006 and b) land use	
	types per AnnAGNPS model flow cell	A-24
C.3	Montgomergy Fork subwatershed a) land use characterization in 2006 and b)	
	land use types per AnnAGNPS model flow cell	A-25
C.4	Smokey Creek subwatershed: a) land use characterization in 2006 and b) land	
~ ~	use types per AnnAGNPS model flow cell	A-26
C.5	Brimstone Creek subwatershed: a) soil type characterization and b) soil types	
~ ~	per AnnAGNPS model flow cell.	A-27
C.6	Ligias Fork subwatershed: a) soil type characterization and b) soil types per	
~ -	AnnAGNPS model flow cell.	A-28
C .7	Montgomery Fork subwatershed: a) soil type characterization and b) soil types	
a 0	per AnnAGNPS model flow cell.	A-29
C.8	Smokey Creek subwatershed: a) soil type characterization and b) soil types per	
G A	AnnAGNPS model flow cell.	A-30
C.9	Brimstone Creek measured stage-discharge relationships. Discharges for stage	
G 10	over 1 m were estimated with HEC-RAS (Massey 2008).	A-31
C.10	Ligias Fork measured stage-discharge relationships. Discharges for stage over	
G 11	1 m were estimated with HEC-RAS (Massey 2008).	A-31
C.11	Montgomery Fork measured stage-discharge relationships. Discharges for stage	
~	over 1 m were estimated with HEC-RAS (Massey 2008).	A-32
C.12	Smokey Creek measured stage-discharge relationships. Discharges for stage	
~	over 1 m were estimated with HEC-RAS (Massey 2008).	A-32
C.13	Brimstone Creek modeled vs measured peak discharge	A-35
C.14	Ligias Fork modeled vs measured peak discharge.	A-36
C.15	Montgomery Fork modeled vs measured peak discharge	A-36
C.16	Smokey Creek modeled vs measured peak discharge.	A-37

C.17	Brimstone Creek modeled vs measured total daily runoff	. A-37
C.18	Ligias Fork modeled vs measured total daily runoff.	. A-38
C.19	Montgomery Fork modeled vs measured total daily runoff	. A-38
C.20	Smokey Creek modeled vs measured total daily runoff	. A-39
C.21	Brimstone Creek modeled vs measured discharge frequency curve	. A-39
C.22	Ligias Fork modeled vs measured discharge frequency curve.	. A-40
C.23	Montgomery Fork modeled vs measured discharge frequency curve	. A-40
C.24	Smokey Creek modeled vs measured discharge frequency curve	. A-41
C.25	Photo of instream stream from dirt road sources on Montgomery Fork after a	
	rain event	. A-42
C.26	Relationship for sediment erosion for dirt road sources in the New River basin	. A-43
C.27	Comparisons of measured and modeled suspended sediment for Brimstone Cr	. A-48
C.28	Comparisons of measured and modeled suspended sediment for Ligias Fork	. A-49
C.29	Comparisons of measured and modeled suspended sediment for Montgomery	
	Fork	. A-49
C.30	Comparisons of measured and modeled suspended sediment for Smokey Creek	.A-50
0.00		
D.1.	Brimstone cross section X8.	. A-64
D.2.	Brimstone cross section X7.	A-65
D.3	Brimstone cross section X6	A-66
D.4	Brimstone cross section X5	A-67
D.5	Brimstone cross section X4	A-68
D.6	Brimstone cross section X3	A-69
D 7	Brimstone cross section X2	A-70
D.7.	Brimstone cross section X1	A-71
D.0.	Ligias Fork cross section X1	A-83
D 10	Ligius Fork cross section X?	A-84
D 11	Ligius Fork cross section X3	A-85
D 12	Ligius Fork cross section X4	A-86
D.12. D.13	Ligids Fork cross section X5	A-87
D.13. D 14	Ligids Fork cross section X6	A-88
D.14.	Montgomery Fork cross section X1	A_117
D.15.	Montgomery Fork cross section X?	Δ_{-118}
D.10.	Montgomery Fork cross section X3	Δ_{-110}
D.17.	Montgomery Fork cross section X_{4}	A_{-120}
D.17.	Montgomery Fork cross section X5	A = 120 A = 121
D.10.	Montgomery Fork cross section X6	Δ_{-121}
D.17.	Montgomery Fork cross section X7	A 122
D.20.	Montgomery Fork cross section X8	$\Lambda 124$
D.21.	Montgomery Fork cross section X0	A = 124
D.22.	Montgomery Fork cross section X10	A-125
D.24. D 22	Smokey Creek cross section X0	A = 120
D.23.	Smokey Creek cross section V0.5	A 115
D.24.	Smokey Creek cross section V1	$\frac{1}{1}$
D.23.	Smolvey Creek closs section V2	A = 140
D.20.		A-14/

		Page
D.29.	Smokey Creek cross section X2.5	. A-148
D.30.	Smokey Creek cross section X3.	. A-149
D.31.	Smokey Creek cross section X4.	. A-150
D.32.	Smokey Creek cross section X5.	. A-151
D.33.	Smokey Creek cross section X6.	. A-152
D.34.	Smokey Creek cross section X7.	. A-153
E.1.	Brimstone Creek cross section X1 (upstream)	. A-155
E.2.	Brimstone Creek cross section X2.	. A-156
E.3.	Brimstone Creek cross section X3.	. A-157
E.4.	Brimstone Creek cross section X4.	. A-158
E.5.	Brimstone Creek cross section X5.	. A-159
E.6.	Brimstone Creek cross section X6.	. A-160
E.7.	Brimstone Creek cross section X7	. A-161
E.8.	Brimstone Creek cross section X8 (downstream)	. A-162
E.9.	Brimstone Creek bed elevation change	. A-163
E.10.	Ligias Fork cross section X1 (downstream).	. A-164
E.11.	Ligias Fork cross section X2	. A-165
E.12.	Ligias Fork cross section X3	. A-166
E.13.	Ligias Fork cross section X4	. A-167
E.14.	Ligias Fork cross section X5	. A-168
E.15.	Ligias Fork cross section X6 (upstream).	. A-169
E.16.	Ligias Fork bed elevation change.	. A-170
E.17.	Montgomery Fork cross section X1 (downstream).	. A-171
E.18.	Montgomery Fork cross section X2	. A-172
E.19.	Montgomery Fork cross section X3	. A-173
E.20.	Montgomery Fork cross section X4	. A-174
E.20.	Montgomery Fork cross section X5	. A-175
E.21.	Montgomery Fork cross section X6	. A-176
E.21.	Montgomery Fork cross section X7	. A-177
E.22.	Montgomery Fork cross section X8	. A-178
E.23.	Montgomery Fork cross section X9	. A-179
E.24.	Montgomery Fork cross section X10 (upstream).	. A-180
E.25.	Montgomery Fork bed elevation change.	. A-181
E.26.	Smokey Creek cross section X0 (downstream).	. A-182
E.27.	Smokey Creek cross section X0.5.	. A-183
E.28.	Smokey Creek cross section X1.	. A-184
E.29.	Smokey Creek cross section X2.	. A-185
E.30.	Smokey Creek cross section X2.5.	. A-186
E.31.	Smokey Creek cross section X3.	. A-187
E.32.	Smokey Creek cross section X4.	. A-188
E.33.	Smokey Creek cross section X5.	. A-189
E.34.	Smokey Creek cross section X6.	. A-190
E.35.	Smokey Creek cross section X7 (upstream).	. A-191
E.36	Smokey Creek bed elevation change.	. A-192

F.1	Nonparameteric multivariate results for 06-PW-Cl.	A-210
F.2	Nonparameteric multivariate results for 06-PW-Si.	A-211
F.3	Nonparameteric multivariate results for 06-PW-TSY.	A-212
F.4	Nonparameteric multivariate results for 06-PW-ClSi	A-213
F.5	Average annual sediment yield 2006 clay weigh regression model	A-214
F.6	Average annual sediment yield 2006 clay weight residual plots	A-215
F.7	Average annual sediment yield 2006 silt weigh regression model	A-216
F.8	Average annual sediment yield 2006 silt weight residual plots	A-217
F.9	Average annual sediment yield 2006 total yield regression model	A-218
F.10	Average annual sediment yield 2006 total yield residual plots	A-219
F.11	Average annual sediment yield 2006 clay and silt yield regression model	A-220
F.12	Average annual sediment yield 2006 clay and silt yield residual plots	A-221

List of Tables

0.1		
C.I.	Runoff curve numbers (CN) used in the AnnAGNPS model	. A-34
C.2.	Manning s n for sneet flow of each cell based on land use.	. A-35
C.3.	Summary of AnnAGNPS flow cells with dirt roads.	. A-43
C.4.	Non-crop data values used to estimate RUSLE C-factor	. A-44
C.5.	Management field data values used in the AnnAGNPS model.	. A-45
C.6.	Comparison of USGS ISS samples per study site.	. A-45
C./.	Summary of measured and modeled suspended sediment for Brimstone Creek	. A-46
C.8.	Summary of measured and modeled suspended sediment for Ligias Fork.	. A-46
C.9.	Summary of measured and modeled suspended sediment for Montgomery Fork	. A-47
C.10.	Summary of measured and modeled suspended sediment for Smokey Creek	. A-47
D.1.	Brimstone pebble count data for cross-section X6.	. A-52
D.2.	Brimstone pebble count summary for cross-section X6.	A-52
D.3.	Brimstone sediment grain size distribution for cross-section X6.	A-53
D.4.	Brimstone sediment profile	A-53
D.5	Brimstone soil definition	A-54
D.6.	Brimstone left bank soil profile.	. A-54
D.7.	Brimstone cross section X8.	A-55
D.8.	Brimstone cross section X7.	. A-56
D.9.	Brimstone cross section X6.	. A-57
D.10	Brimstone cross section X5	A-58
D.11.	Brimstone cross section X4.	. A-59
D.12.	Brimstone cross section X3.	. A-60
D.13.	Brimstone cross section X2	. A-61
D.14.	Brimstone cross section X1.	A-62
D.15.	Brimstone sediment transport options.	A-63
D.16.	Ligias Fork pebble count data for cross-section X3	. A-72
D.17.	Ligias Fork pebble count summary for cross-section X3.	. A-72
D.18.	Ligias Fork sediment grain size distribution for cross-section X3	. A-73
D.19.	Ligias Fork sediment profile	A-73
D.20.	Ligias Fork bank sieve analysis results (non-eroding bank).	A-74
D.21.	Ligias Fork bank sieve analysis results (eroding bank)	. A-74
D.22.	Ligias Fork soil grain size distribution (non-eroding bank).	. A-75
D.23.	Ligias Fork soil grain size distribution (eroding bank)	. A-75
D.24.	Ligias Fork left bank soil profile.	. A-76
D.25.	Ligias Fork right bank soil profile.	. A-76
D.26.	Ligias Fork eroding bank soil profile	. A-76
D.27.	Ligias Fork cross section X1	. A-77
D.28.	Ligias Fork cross section X2	. A-78
D.29.	Ligias Fork cross section X3	. A-79
D.30.	Ligias Fork cross section X4	. A-80
D.31.	Ligias Fork cross section X5	. A-81
D.32.	Ligias Fork cross section X6	. A-82
D.33.	Montgomery Fork pebble count data MFCS-X1.	. A-89
D.34.	Montgomery Fork pebble count data MFCS-X3.	. A-90

List of Tables

D.35.	Montgomery Fork pebble count data MFCS-X4.	A-91
D.36.	Montgomery Fork pebble count data MFCS-X7	A-92
D.37.	Montgomery Fork pebble count data MFCS-X9.	A-93
D.38.	Montgomery Fork pebble count data MFCS-X10.	A-94
D.39.	Summary of pebble count data (MFCS-X1).	A-95
D.40.	Summary of pebble count data (MFCS-X3)	A-95
D.41.	Summary of pebble count data (MFCS-X4)	A-95
D.42.	Summary of pebble count data (MFCS-X7)	A-96
D.43.	Summary of pebble count data (MFCS-X9)	A-96
D.44.	Summary of pebble count data (MFCS-X10)	A-96
D.45.	Sediment grain size distribution (MFCS-X1).	A-97
D.46.	Sediment grain size distribution (MFCS-X3).	A-98
D.47.	Sediment grain size distribution (MFCS-X4).	A-99
D.48.	Sediment grain size distribution (MFCS-X7).	A-100
D.49.	Sediment grain size distribution (MFCS-X9).	A-101
D.50.	Sediment grain size distribution (MFCS-X10).	A-102
D.51.	Montgomery Fork sediment profile (typical).	A-102
D.52.	Montgomery Fork soil profile (MFCS-X1).	A-103
D.53.	Montgomery Fork soil profile (MFCS-X10).	A-103
D.54.	Montgomery Fork soil profile (MFCS-X1).	A-104
D.55.	Montgomery Fork cross section X1	A-105
D.56.	Montgomery Fork cross section X2	A-106
D.57.	Montgomery Fork cross section X3	A-107
D.58.	Montgomery Fork cross section X4	A-108
D.59.	Montgomery Fork cross section X5	A-109
D.60.	Montgomery Fork cross section X6	A-110
D.61.	Montgomery Fork cross section X7	A-111
D.62.	Montgomery Fork cross section X8	A-112
D.63.	Montgomery Fork cross section X9	A-113
D.64.	Montgomery Fork cross section X10	A-114
D.65.	Montgomery Fork sediment transport options	A-115
D.66.	Montgomery Fork simulation period.	A-115
D.67.	Montgomery Fork streambank erosion options.	A-116
D.68.	Smokey Creek pebble count data for cross-section X2.	A-127
D.69.	Smokey Creek pebble count summary for cross-section X2	A-128
D.70.	Smokey Creek sediment grain size distribution for cross-section X2	A-128
D.71.	Smokey Creek sediment profile	A-129
D.72.	Smokey Creek bank soil data at cross section X2	A-129
D.73.	Smokey Creek bank soil data at cross section X2.5	A-130
D.74.	Smokey Creek left bank soil profile.	A-130
D.75.	Smokey Creek right bank soil profile.	A-131
D.76.	Smokey Creek eroding bank soil profile.	A-131
D.77.	Smokey Creek cross section X0.	A-132
D.78.	Smokey Creek cross section X0.5.	A-133
D.79.	Smokey Creek cross section X1.	A-134

List of Tables

D.80.	Smokey Creek cross section X2 A-13.	5
D.81.	Smokey Creek cross section X2.5. A-13	6
D.82.	Smokey Creek cross section X3	7
D.83.	Smokey Creek cross section X4	8
D.84.	Smokey Creek cross section X5	9
D.85.	Smokey Creek cross section X6	0
D.86.	Smokey Creek cross section X7	1
D.87.	Smokey Creek sediment transport options	2
D.88.	Smokey Creek simulation period. A-14	2
D.89.	Smokey Creek streambank erosion options	3
E.1.	Brimstone event file summary	3
E.2.	Ligias Creek event file summary.	6
E.3.	Montgomery Fork event file summary	9
E.4.	Smokey Creek event file summary	2
F.1.	Statistical variables used in correlation analysis among sediment characteristics	
	between measured and modeled output	7
F.2.	Results of nonparametric multivariate analysis with sediment data: A summary	
	of significant correlations	9
F.3.	Summary of statistical relationships for sediment deposition and yield	2
	· · · ·	

APPENDICES

APPENDIX A:

RAPID GEOMORPHIC ASSESSMENT (RGA) FIELD FORMS

-)escription	Station I			Station #
-			les Taken	Samp		_ Crew_		Date
		Slope		s section.	nstream cros	pstream down	circle) u	Pictures (
						terial	y bed ma	1. Primar
		Silt Clay	Sand	Gravel	Cobble	Boulder/	Bedrock	
-		4	3	2		1	0	
			- · · ·					
				12.1		tion	nk protec	2. Bed/ba
			2 banks	1 bank	(with)	No	Yes	
			be	protect				
1			3	2		1	0	
	A 100%)	nlain/tennas	and the stand			m 1.4		
	e @ 100 %)	plain/terrac	76-100%	51.75%	26.50%	11.25%	0.10%	5. Degree
			0	1	20-3076	3	4	
	(mstream)	om un to dov	nk width fr	ose in ton-ba	ative decre	iction (Rel	of constr	Deares
	· · · · · · · · · · · · · · · · · · ·		76-100%	51-75%	26-50%	11-25%	0-10%	a. Degree
			4	3	2	1	0	
-				C	17			
					bank)	sion (Each	bank eros	5. Stream
				ng (failures)	mass wasti	fluvial	None	
				2,	2	1	0	Left
					2	1	0	Right
			ng)	ch bank failin	rcent of ea	ability (Per	bank inst	6. Stream
			76-100%	51-75%	26-50%	11-25%	0-10%	
1.000			2	1.5	1	0.5	0	Left
4			2	1.5	1	0.5	0	Right
			bank)	e cover (Each	-vegetative	rian woody	shed ripu	7. Establi
			76-100%	51-75%	26-50%	11-25%	0-10%	
-			0	0.5	1	1.5	2	Left
			0	0.5	1	1.5	2	Right
	a)	ial deposition	k with fluv	nt of each ban	ion (Percen	ank accreti	rence of b	8. Occurs
			76-100%	51-75%	26-50%	11-25%	0-10%	
			0	0.5	1	1.5	2	Left
-			0	0.5	1	1.5	2	Right
		10			1000	l evolution	of channel	9. Stage
		VI	v	IV	ш	п	1	
							0	

Date Crew Location/Description (pool, riffle, 1 or $(pool, riffle, 1 or grad riftle, 1 or grad rightle, 1 or grad ris rightle, 1 or grad rightle, 1 or grad rightle, 1 or $	f 3, addition 51 52 53 54 55 56 57 58 59 60 61 62 63	nal samples?)
Location/Description 1 26 2 27 3 28 4 29 5 30 6 31 7 32 8 33 9 34 10 35 11 36 12 37 13 38 14 39 15 40	f 3, addition 51 52 53 54 55 56 57 58 59 60 61 62 63	nal samples?)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51 52 53 54 55 56 57 58 59 60 61 62 63	76 77 78 79 80 81 82 83 84 85 86 87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51 52 53 54 55 56 57 58 59 60 61 62 63	76 77 78 79 80 81 82 83 84 85 86 87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 53 54 55 56 57 58 59 60 61 62 63	77 78 79 80 81 82 83 84 85 86 87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53 54 55 56 57 58 59 60 61 62 63	78 79 80 81 82 83 84 85 86 87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 55 56 57 58 59 60 61 62 63	79 80 81 82 83 84 85 86 87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55 56 57 58 59 60 61 62 63	80 81 82 83 84 85 86 87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56 57 58 59 60 61 62 63	81 82 83 84 85 86 87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 58 59 60 61 62 63	82 83 84 85 85 86 87
8 33 9 34 10 35 11 36 12 37 13 38 14 39 15 40 16 41	58 59 60 61 62 63	83 84 85 85 86 87
9 34 10 35 11 36 12 37 13 38 14 39 15 40	59 60 61 62 63	84 85 86 87
10 35 11 36 12 37 13 38 14 39 15 40 16 41	60 61 62 63	85 86 87
11 36 12 37 13 38 14 39 15 40 16 41	61 62 63	86 87
12 37 13 38 14 39 15 40 16 41	62 63	87
13 38 14 39 15 40 16 41	63	
14 39 15 40 16 41		88
15 40	64	89
16 41	65	90
10 41	66	91
17 42	67	92
18 43	68	93
19 44	69	94
20 45	70	95
21 46	71	96
22 47	72	97
23 48	73	98
24 49	74	99

APPENDIX B:

Uplands Sediment Samples: Particles Size Distributions

Figure B.1. Particle (Grain) Size Distribution for Brimstone stream site U-BR-1.

Figure B.2. Particle (Grain) Size Distribution for Brimstone stream site U-BR-2.

Figure B.3. Particle (Grain) Size Distribution for Brimstone stream site U-BR-3.

Figure B.4. Particle (Grain) Size Distribution for Brimstone stream site U-BR-4.

Figure B.5. Particle (Grain) Size Distribution for Montgomery stream site U-MF-1.

Figure B.6. Particle (Grain) Size Distribution for Brimstone stream site U-MF-2.

Figure B.7. Particle (Grain) Size Distribution for Brimstone stream site U-MF-3.

Figure B.8. Particle (Grain) Size Distribution for Brimstone stream site U-MF-4.

Figure B.9. Particle (Grain) Size Distribution for Smokey stream site U-SC-1.

Figure B.10. Particle (Grain) Size Distribution for Smokey stream site U-SC-2.

Figure B.11. Particle (Grain) Size Distribution for Smokey stream site U-SC-3

Figure B.12. Particle (Grain) Size Distribution for Smokey stream site U-SC-4.

APPENDIX C:

AnnAGNPS MODEL CALIBRATION RESULTS

C.1. AnnAGNPS Model Calibrations: Flow Cell and Reach Generation

Before calibrating the AnnAGNPS model for each subwatershed, the flow cells were adequately sized to represent the different types of land use activities and soil types within the area (Phase I Report). For each subwatershed, the cell simulation area (CSA) and minimum simulation channel length (MSCL) were set to 15 hectares and 100 meters, respectively. Smaller set of flow cell areas and lengths in the AnnAGNPS produced model errors or would group the same amount of land use and soil aspects of the area as before but require a longer time to compute more cell shapes. Once a uniform set of flow cells have been defined, the model outlet was set at the location of the stage recorder, and the various land use and soil type polygons created from the ArcMap GIS software were grouped into different flow cells for AnnAGNPS hydrologic computations. After the flow cell polygons were created, the AnnAGNPS model selects the dominant land use and soil type within a cell's area; therefore, each cell is entirely represented by a single land use activity and soil type. Figures C.1 through C.4 show the original land use types in a watershed before and after the cells capture the most dominant land use activities. Figures C.1 through C.4 have been divided into two segments: segment (a) and segment (b). For each figure, (a) illustrates the 2006 custom land use for each subwatershed imported into the AnnAGNPS model, and (b) illustrates the dominant land use types for each flow cell that the AnnAGNPS model uses for runoff and sediment yield computations. As seen in Figures C.1 through C.4, the AnnAGNPS model's flow cells only perform computations on a few of the land use activities that are largely found within each study subwatershed. Note, large white areas in the lower portion of the subwatershed are areas that were not modeled and have no flow cells. Modeled areas were above our stage recording stations.

Figures C.5 through C.8 show the original soil types within a watershed before and after the cells attempt to capture the most dominant soils within the area. Like that of each subwatershed's land use previously mentioned, Figures C.5 throughC.8 have been divided into (a) the GIS-defined soil types, and (b) the soil types defined by flow cell. For each figure, the segment (a) is provided to illustrate the soil data for each sub-watershed imported into the AnnAGNPS model. Each figure (b) is provided to illustrate the dominant types for each flow cell that the AnnAGNPS model uses for runoff and sediment yield computations. As seen in Figures C.5 through C.8, the AnnAGNPS model's flow cells only select the dominant soil types within each subwatershed. The flow cells are largely created by the different topography of a watershed, and with such a steep terrain in the New River subwatersheds, several flow cells vary considerably in size.

C.2. AnnAGNPS Model Calibrations: Runoff Calibration

The measured storm water runoff at the outlet of each subwatershed was measured by the coupled use of stream stage monitors set to record in 20-minute increments with manual velocity measurements taken at a variety of different stream stage heights. During several of the large storm events, the four subwatersheds' stream velocity could not be safely measured, so the HEC-RAS model was used to estimate the stream discharge at stream stages that would represent bankfull conditions or better. By organizing the stage and velocity measurements at the main channel's outlet of each subwatershed, a stage-discharge relationship could be established to create a series of equations that would transform the continuously collected stage data into a flow rate. The stage-discharge plots for the outlet of each subwatershed, with the appropriate equations to describe the different relationships, are shown in Figures C.9 through C.12.

Figure C.1 Brimstone Creek subwatershed a) land use characterization in 2006 and b) land use types per AnnAGNPS model flow cell.

Figure C.2 Ligias Fork subwatershed a) land use characterization in 2006 and b) land use types per AnnAGNPS model flow cell.

Figure C.3 Montgomery Fork subwatershed a) land use characterization in 2006 and b) land use types per AnnAGNPS model flow cell.

Figure C.4 Smokey Creek subwatershed a) land use characterization in 2006 and b) land use types per AnnAGNPS model flow cell.

Figure C.5. Brimstone Creek subwatershed: a) soil type characterization and b) soil types per AnnAGNPS model flow cell.

Figure C.6. Ligias Fork subwatershed: a) soil type characterization and b) soil types per AnnAGNPS model flow cell.

Figure C.7. Montgomery Fork subwatershed: a) soil type characterization and b) soil types per AnnAGNPS model flow cell.

Figure C.8. Smokey Creek subwatershed: a) soil type characterization and b) soil types per AnnAGNPS model flow cell.

Figure C.9. Brimstone Creek measured stage-discharge relationships. Discharges for stage over 1 m were estimated with HEC-RAS (Massey 2008).

Figure C.10. Ligias Fork measured stage-discharge relationships. Discharges for stage over 1 m were estimated with HEC-RAS (Massey 2008).

Figure C.11 Montgomery Fork measured stage-discharge relationships. Discharges for stage over 1 m were estimated with HEC-RAS (Massey 2008).

Figure C.12. Smokey Creek measured stage-discharge relationships. Discharges for stage over 1 m were estimated with HEC-RAS (Massey 2008).

After using the established stage-discharge relationships at the outlet of each subwatershed, the continuously measured stage data was converted into a flow rate. Between each storm event, which produced a surface runoff amount, the baseflow was separated from the stage data recorded to produce a measured daily runoff amount at each of the four subwatersheds of interest in the New River Basin. This measured daily surface runoff amount was then compared to the estimated or predicted runoff found from the AnnAGNPS model from a limited amount of local climate data measured from the Big South Fork Weather Station as well as four other local rain gauges near to all subwatersheds. To better calibrate each subwatershed, the precipitation data from the Big South Fork River and Recreation Area's Full Weather Station was slightly modified with the precipitation data from the four other tipping bucket rain gauges (which are located around the New River Basin) to better represent the amount of rainfall occurring in this mountainous landscape. The Big South Fork River and Recreation Area's precipitation data was tailored with the other tipping bucket rain gauges based on the tipping bucket's elevation and location in respect to each of the four subwatersheds used in this study. More tipping bucket rain gauges within each subwatershed would have been ideal, but due to this study's lack of time, finance, and personnel, the only climate data that was used was from devices previously installed by other agencies for long-term measurements.

Since the AnnAGNPS model uses the USDA-NRCS (SCS) Runoff Curve Number (CN) method for different land use activities and hydrologic soil groups, the CNs for in each subwatershed were slightly modified from standard suggested textbook values to better represent and calibrate the predicted runoff from the AnnAGNPS model with measured values. Table C.1 provides the CNs that produced satisfactory results for each of the subwatershed's common land uses.

The peak flow rate produced by the AnnAGNPS model is a function of the Manning's n roughness coefficients for sheet, shallow, and concentrated flows from the cells and reaches defined in the AnnAGNPS model. Since the Manning's n values for the landscape and streams affects the sediment yield as well, these values for each subwatershed were adjusted later in the calibration process with that of predicted sediment yield. Overall, the Manning's n values for sheet and concentrated flow are slightly higher than what is suggested from most open channel textbooks for different land use environments. Table C.2 summarizes the different Manning's n values used in each subwatershed with the AnnAGNPS model.

Even with slightly higher Manning's n values for the four different subwatersheds, the peak flow rate produced from the model was usually overestimated by the AnnAGNPS model in comparison to the measured peak discharge at the outlet of each subwatershed. The measured peak discharge was obtained from the largest discharge by the stage discharge relationship obtained from the stage recorders. The summarized comparison of the measured versus predicted peak discharge at each subwatershed can be seen in Figures C.13 through C.16.

Though the predicted peak discharge from AnnAGNPS was consistently greater than the measured peak discharge at the outlet of the four different subwatersheds, the predicted total daily runoff matched fairly well with the measured total daily runoff at each subwatershed. The summarized predicted versus measured total daily runoff at the outlet of each of the subwatersheds can be seen graphically in Figures C.17 through C.20. To better represent how well the measured daily runoff agrees with that produced by the AnnAGNPS model, an average runoff discharge frequency plot was developed for each of the four subwatersheds. Shown in

AnnAGNPS Field ID	Land use / Land cover	Curve Numbers for Hydrologic Soil Groups				
r leia ID	Description	Α	В	С	D	
1	Open Water	0	0	0	0	
2	Developed Open Space	47	69	79	86	
3	Developed, Low Intensity	51	68	79	84	
4	Developed, Medium Intensity	77	85	90	92	
5	Developed, High Intensity	81	88	91	93	
6	Barren Land (Rock/Sand/Clay)	68	79	86	89	
7	Deciduous Forest	36	59	72	79	
8	Evergreen Forest	36	59	72	79	
9	Mixed Forest	36	59	72	79	
10	Shrub/Scrub	34	48	65	73	
11	Grassland/Herbaceous	39	61	74	80	
12	Pasture/Hay	49	69	79	84	
13	Cultivated Crops	66	74	80	82	
14	Woody Wetlands	38	62	78	82	
101	25% Logged	39	63	75	80	
102	50% Logged	45	67	78	82	
103	75% Logged	59	77	82	89	
104	100% Logged	74	82	88	94	
201	Active Surface Mining	77	86	91	94	
202	Abandoned Surface Mining	49	66	76	82	
301	Dirt Roads	72	82	87	89	

Table C.1. Runoff curve numbers (CN) used in the AnnAGNPS model.

Figures C.21 through C.24 are the daily average runoff discharge values measured and predicted by the AnnAGNPS model for each of the four study subwatersheds. These values used in the frequency plots have a variety of data points, since some of the subwatersheds contained measured data beginning in July 2007, and others did not have available measured runoff values until November 2007. As can be seen in the frequency discharge relationships between measured and predicted by AnnAGNPS, the model seems to slightly overestimate smaller runoff causing events, while it slightly underestimates the larger runoff causing events. With most of the subwatersheds, the medium sized runoff events seem to vary the most from measured versus predicted values with the AnnAGNPS model.

From a uniform set of NRCS TR-55 curve numbers and Manning's n values determined for the different land use characteristics through calibration techniques, the predicted daily runoff values estimated by the AnnAGNPS model seem to correspond to the actual New River hydrology reasonable well with the limited amount of weather and streamflow data. Overall, there is some error in the model's computations of peak flow, which are likely due to the steep slope of the New River Basin topography, insufficient weather data, and the NRCS TR-55's assumption of all storm event intensities having a Type II distribution. The daily total surface

AnnAGNPS Field ID	Land use / Land cover Description	Manning's n Roughness Coefficient		
		Cell	Cell Shallow	Reach
		Sheetflow	Concentrated	Concentrated
2	Developed Open Space	0.01	0.025	0.08
3	Developed, Low Intensity	0.01	0.025	0.08
4	Developed, Medium Intensity	0.01	0.025	0.08
5	Developed, High Intensity	0.01	0.025	0.08
6	Barren Land (Rock/Sand/Clay)	0.01	0.025	0.08
7	Deciduous Forest	0.95	0.055	0.08
8	Evergreen Forest	0.95	0.055	0.08
9	Mixed Forest	0.95	0.055	0.08
10	Shrub/Scrub	0.95	0.055	0.08
11	Grassland/Herbaceous	0.15	0.055	0.08
12	Pasture/Hay	0.15	0.025	0.08
13	Cultivated Crops	0.15	0.025	0.08
14	Woody Wetlands	0.50	0.055	0.08
101	25% Logged	0.75	0.025	0.08
102	50% Logged	0.45	0.025	0.08
103	75% Logged	0.15	0.025	0.08
104	100% Logged	0.03	0.025	0.08
201	Active Surface Mining	0.05	0.025	0.08
202	Abandoned Surface Mining	0.05	0.025	0.08
301	Dirt Roads	0.05	0.025	0.08

Table C.2. Manning's n for sheet flow of each cell based on land use.

Figure C.13. Brimstone Creek modeled vs measured peak discharge.

Figure C.14. Ligias Fork modeled vs measured peak discharge.

Figure C.15. Montgomery Fork modeled vs measured peak discharge.

Figure C.16. Smokey Creek modeled vs measured peak discharge.

Figure C.17. Brimstone Creek modeled vs measured total daily runoff.

Figure C.18. Ligias Fork modeled vs measured total daily runoff.

Figure C.19. Montgomery Fork modeled vs measured total daily runoff.

Figure C.20. Smokey Creek modeled vs measured total daily runoff.

Figure C.21. Brimstone Creek modeled vs measured discharge frequency curve.

Figure C.22. Ligias Fork modeled vs measured discharge frequency curve.

Figure C.23. Montgomery Fork modeled vs measured discharge frequency curve.

Figure C.24. Smokey Creek modeled vs measured discharge frequency curve.

runoff amount also contains some error, which is likely due to inadequate weather data available and the daily time step of the AnnAGNPS model which does not carry a continuous storm event over into the next day. In addition, the lack of measured discharges above waist deep, relying on the HEC-RAS model for estimating discharges likely also contributed to the differences between modeled and measured discharges in the mid ranges.

C.3. AnnAGNPS Model Calibrations: Sediment Yield Calibration

After the AnnAGNPS model produced satisfactory storm water runoff results with the limited amount of time and weather data available for all four study subwatersheds in the New River Basin, the calibration of the sediment yield was initiated. The AnnAGNPS model uses the RUSLE variables to estimate the daily sediment yield of a drainage area. RUSLE C and P factors are defined by the user for different land use activities in a designated area. To properly calibrate each subwatershed's sediment yield through the RUSLE C and P factors, a set of TSS samples was obtained at the outlet of each subwatershed for a variety of different storm events.

Using the TSS data collected from a single grab sample using a DH-48 sampler, AnnAGNPS models could generally be calibrated to match current sediment yields occurring from each subwatersheds (Section 5.6). The AnnAGNPS model uses flow cells to group large areas with homogeneous land use and soil data to make computations easier and quicker. By grouping a dominant land use and soil type for a large area for erosion and sediment yield computations, many of the smaller, yet larger sediment-contributing sources, like dirt roads, will likely not be detected. From several visits throughout the New River area, the dirt roads were a significant source of sedimentation into the streams (Figure C.25). The dirt roads in the region were usually associated with surface mining activities, forest logging, or various alternative terrain vehicle (ATV) trails. From field observations, the dirt roads used for travel to logged areas, mined areas, and other locations often contained drainage ditches and culverts that created gullies down to the local streams. By taking flow measurements and grab samples from different dirt road gullies during several storm events, the sediment yield from dirt roads was analyzed through the TSS analysis. By summarizing the daily flow rate within a road drainage way, its TSS concentration, and the amount of runoff contributing from this roadway, a relationship could be derived to represent the amount of sediment yield (Qs) for an estimated storm water runoff (Qw) amount.

Figure C.25. Photo of instream stream from dirt road sources on Montgomery Fork after a rain event.

The AnnAGNPS model uses an exponential relationship between Qs and Qw to provide an amount of sediment being contributed from a flow cell in addition to the amount generated from the defined dominant land use and soil type (Qs & Qw units: m^3/day). From a small set of different grab samples from dirt roads from different subwatersheds, the following equation was derived to represent all the dirt roads in each subwatershed of the New River area with the classical gully command in the AnnAGNPS model (Figure C.26).

$$Qs = 01.0 \ Qw^{0.67}$$

Note that the exponential relationship for the sediment yield produced as a function of from dirt roads was estimated on only seven sets of grab samples for a variety of soil and limestone gravel based roads with different degrees of usage. Therefore, this set of data is very approximate and just provides a general means of accounting for the un-paved road systems within the sediment budget of the New River subwatersheds.

From the relationship established with the amount of runoff from a dirt road area and the amount of sediment yield produced, the AnnAGNPS classical gully command was used to identify each cell in each sub-watershed that had a large road drainage area. Since some of the flow cells only contained a few small pieces of dirt roads, the flow cells that had a dirt road network of 5% of the cell's total area, or 0.5 hectares of area, were selected for the classical gully command. A summary of the number of flow cells that were identified to have dirt roads in each subwatershed for the AnnAGNPS model can be seen in Table C.3.

Figure C.26. Relationship for sediment erosion for dirt road sources in the New River basin.

Watershed	Number of Cells with Dirt Roads ()	Total Cell Area with Dirt Roads (ha)	Total Watershed Area (ha)	Percent of Watershed with Dirt Roads (%)
Brimstone Creek	16	4.56	2,181	0.21%
Ligias Fork	56	63.81	5,218	1.22%
Montgomery Fork	57	42.68	5,748	0.74%
Smokey Creek	77	68.94	7,300	0.94%

Table C.3. Summary of AnnAGNPS flow cells with dirt roads.

After the dirt roads within each sub-watershed were implemented into the AnnAGNPS pollutant loading model, the next objective was to calibrate the RUSLE C and P factors for the different land uses found. From a series of trial and error analyses in the range of common text book values and previous AnnAGNPS modeling studies, the RUSLE C and P factors were adjusted for a variety of different land use features until a satisfactory sediment yield was produced to provide a similar value to that measured in the field. A summary of the RUSLE C and P factors used for a variety of different land use applications for each subwatershed can be seen in Tables C.4 and C.5. The RUSLE C-factors for root mass, cover ratio, rainfall height and residue cover are described in detail in Renard *et al.* (1997).

		Annual	Annual	Annual	Surface
Non-Crop	Non-Crop	Root	Cover	Rain Fall	Residue
ID	Description	Mass	Ratio	Height	Cover
		(kg/ha)	(0-1)	(m)	(%)
2	Developed Open Space	0	1.00	0.00	0
3	Developed, Low Intensity	3000	0.80	0.03	40
4	Developed, Medium Intensity	2000	0.90	0.03	40
5	Developed, High Intensity	1000	0.90	0.03	40
6	Barren Land (Rock/Sand/Clay)	0	0.00	0.00	0
7	Deciduous Forest	7000	0.95	4.57	85
8	Evergreen Forest	6500	0.95	4.57	80
9	Mixed Forest	6750	0.95	4.57	80
10	Shrub/Scrub	6500	0.95	1.22	60
11	Grassland/Herbaceous	3000	0.90	0.03	80
12	Pasture/Hay	3500	0.95	0.03	80
13	Cultivated Crops	4000	0.80	0.03	50
14	Woody Wetlands	6500	0.95	4.57	80
101	25% Logged	1700	0.70	4.57	45
102	50% Logged	1200	0.45	4.57	40
103	75% Logged	800	0.30	4.57	20
104	100% Logged	350	0.05	4.57	10
201	Active Surface Mining	250	0.20	0.03	5
202	Abandoned Surface Mining	900	0.25	1.00	15
301	Dirt Roads	0	0.00	0.00	0

Table C.4. Non-crop data values used to estimate RUSLE C-factor.

Once several suspended sediment samples were captured in the outlet of each subwatershed, the TSS value for a given time and day were multiplied by the total measured runoff to estimate a suspended solids content that would be comparable to the AnnAGNPS's daily sediment yield value. To check the acceptability of TSS measurements found for this study, in each of the four subwatersheds, the suspended sediment samples taken by the USGS in the New River Basin area were used to compare with the samples collected by The University of Tennessee, Knoxville. From Table C.6, the TSS results taken by the USGS at two different gauging stations located on the New River stream for 2006 through 2008 contain similar concentrations to the TSS measurements taken at the four subwatersheds used in this study. Table C.6 is presented to show that the TSS concentrations determined for this study are in agreement with typical suspended sediment concentrations currently found by others in the New River Basin. The suspended sediment data collected by the USGS for the two different gauging stations located on the New River was provided to the OSM on February 28, 2008 from the Tennessee Water Science Center at the Knoxville, TN Field Office.

Tables C.7 through C.10 summarize the TSS analysis as well as the multiple measured versus predicted suspended solids concentration by the AnnAGNPS model after being calibrated. As can be seen from many of the discrepancies between the measured and predicted suspended solids contents, it should be noted that many of the measured TSS samples were not collected

			Percent	RUSLE	Interrill
Management	Land use	Field Land use	Rock	Sub	Erosion
Field ID	Description	Туре	Cover	P-Factor	Code
1000 C.L. P. C. 1990			(%)	(0-1)	(1-4)
2	Developed Open Space	URBAN	0	1	2
3	Developed, Low Intensity	URBAN	30	1	3
4	Developed, Medium Intensity	URBAN	55	1	3
5	Developed, High Intensity	URBAN	80	1	3
6	Barren Land (Rock/Sand/Clay)	URBAN	50	1	2
7	Deciduous Forest	FOREST	25	1	4
8	Evergreen Forest	FOREST	25	1	4
9	Mixed Forest	FOREST	25	1	4
10	Shrub/Scrub	FOREST	25	1	4
11	Grassland/Herbaceous	PASTURE	20	1	3
12	Pasture/Hay	PASTURE	20	1	3
13	Cultivated Crops	PASTURE	15	1	2
14	Woody Wetlands	FOREST	25	1	4
101	25% Logged	FOREST	25	1	4
102	50% Logged	FOREST	25	1	4
103	75% Logged	FOREST	25	1	4
104	100% Logged	FOREST	25	1	4
201	Active Surface Mining	URBAN	85	1	4
202	Abandoned Surface Mining	URBAN	50	1	4
301	Dirt Roads	URBAN	80	1	4

Table C.5. Management field data values used in the AnnAGNPS model.

Table C.6. Comparison of USGS TSS samples per study site.

Agency	Sample Site	Number of Samples Taken	Sample Period	Average TSS (mg/L)	Minimum TSS (mg/L)	Maximum TSS (mg/L)
USGS	New River at New River USGS Gauging Station	22	2006-2008	128	1	434
USGS	New River at Cordell Bridge USGS Gauging Station	22	2006-2008	197	1	624
UT	Brimstone Creek	9	2008	38	6	87
UT	Ligias Fork	9	2008	159	17	454
UT	Montgomery Fork	8	2008	143	9	564
UT	Smokey Creek	8	2008	120	1	571

USGS: TSS samples taken independent of this study by U.S. Geological Survey on the New River UT: TSS samples taken for this study by The University of Tennessee

Watershed:	Brimstone Cre	ek @ BSC-1		Drainage.	Area (m²):	21,81	0,000
		Measured	Flow Rate	Measured	Measured	Measured	Predicted
Sample	Sample	Suspended	during	Peak	Total	Suspended	Suspended
No.	Date	Solids	Sampling	Flow	Runoff	Solids	Solids
()	(mm/dd/yyyy)	(mg/L)	(m ³ /sec)	(m ³ /sec)	(m ³)	(Mg/day)	(Mg/day)
1	1/10/2008	78.40	1.00	11.74	360,000	28.2	38.0
2	1/11/2008	55.25	4.50	9.84	360,000	19.9	0.3
3	1/26/2008	0.00	0.27	0.27	0	0.0	0.0
4	1/29/2008	3.50	0.25	0.29	600	0.0	0.2
5	1/30/2008	5.90	0.45	0.59	50,000	0.3	0.0
6	2/1/2008	8.67	0.31	0.59	32,000	0.3	0.0
7	2/6/2008	87.33	4.54	4.77	180,000	15.7	23.6
8	2/12/2008	8.00	0.33	0.36	100	0.0	0.9
9	2/13/2008	6.00	1.07	1.23	41,000	0.2	0.0
10	2/21/2008	8.00	2.76	2.83	144,000	1.2	0.0
11	2/22/2008	11.00	2.72	2.95	118,000	1.3	0.0
12	3/4/2008	78.00	2.91	5.65	130,000	10.1	104.8

Table C.7. Summary of measured and modeled suspended sediment for Brimstone Creek.

Table C.8. Summary of measured and modeled suspended sediment for Ligias Fork.

Watershed:	Ligias Forl	k @ LF-1		Drainage	Area (m²):	52,19	4,800
86		Measured	Flow Rate	Measured	Measured	Measured	Predicted
Sample	Sample	Suspended	during	Peak	Total	Suspended	Suspended
No.	Date	Solids	Sampling	Flow	Runoff	Solids	Solids
()	(mm/dd/yyyy)	(mg/L)	(m ³ /sec)	(m ³ /sec)	(m ³)	(Mg/day)	(Mg/day)
1	1/10/2008	58.05	1.40	4.49	660,000	38.3	149.1
2	1/11/2008	32.25	1.63	4.38	1,550,000	50.0	1.2
3	1/30/2008	17.40	1.22	1.51	50,000	0.9	0.0
4	2/1/2008	252.00	1.75	1.82	70,000	17.6	3.4
5	2/6/2008	342.00	3.05	3.08	1,090,000	372.8	57.3
6	2/12/2008	28.00	0.88	0.96	1,400	0.0	1.7
7	2/13/2008	454.00	1.01	2.05	79,000	35.9	0.0
8	2/21/2008	16.00	1.17	1.31	0	0.0	0.0
9	2/22/2008	18.00	1.03	1.11	1,700	0.0	0.6
10	3/4/2008	230.00	12.75	50.73	1,450,000	333.5	159.9

during peak flow and peak suspended sediment conditions in most the streams, so it is assumed that some of the measured suspended solids concentrations are considerably lower than that of actual concentrations. It is also interesting to note that a storm that enters into a watershed from the late evening hours to the early morning hours of the next day creates some complications with the AnnAGNPS model. Looking at January 10 and 11, the measured suspended sediment concentrations summarized together are close to the value predicted by AnnAGNPS on just January 10th, since that is the day when the largest portion of the storm entered into the subwatersheds. The model did not know that this January 10th storm passed through during the late evening hours and carried over to the early morning hours of the next day; it just knew that

Watershed:	Montgomery Fo	rk @ MFCS-1		Drainage.	Area (m²):	57,48	3,900
		Measured	Flow Rate	Measured	Measured	Measured	Predicted
Sample	Sample	Suspended	during	Peak	Total	Suspended	Suspended
No.	Date	Solids	Sampling	Flow	Runoff	Solids	Solids
()	(mm/dd/yyyy)	(mg/L)	(m ³ /sec)	(m ³ /sec)	(m ³)	(Mg/day)	(Mg/day)
1	1/10/2008	162.90	2.08	13.92	600,000	97.7	138.2
2	1/11/2008	34.50	5.98	12.01	670,000	23.1	0.0
3	1/26/2008	1.00	0.85	0.85	0	0.0	0.0
4	1/30/2008	9.07	2.34	2.54	150,000	1.4	0.0
5	2/1/2008	114.80	1.24	2.21	70,000	8.0	15.9
б	2/6/2008	564.00	7.37	8.25	310,000	174.8	113.8
7	2/12/2008	10.00	1.47	1.57	700	0.0	12.9
8	2/13/2008	66.00	2.20	3.11	115,000	7.6	0.0
9	2/21/2008	26.00	1.98	2.14	0	0.0	0.0
10	2/22/2008	49.00	1.77	2.14	10,000	0.5	1.2
11	3/4/2008	142.00	3.11	9.00	170,000	24.1	293.9

Table C.9. Summary of measured and modeled suspended sediment for Montgomery Fork.

Table C.10. Summary of measured and modeled suspended sediment for Smokey Creek.

Watershed:	Smokey Cre	ek @ SC-1		Drainage.	Area (m²):	73,01	5,200
		Measured	Flow Rate	Measured	Measured	Measured	Predicted
Sample	Sample	Suspended	during	Peak	Total	Suspended	Suspended
No.	Date	Solids	Sampling	Flow	Runoff	Solids	Solids
()	(mm/dd/yyyy)	(mg/L)	(m ³ /sec)	(m ³ /sec)	(m ³)	(Mg/day)	(Mg/day)
1	1/10/2008	150.30	3.95	16.55	800,000	120.2	689.2
2	1/11/2008	134.25	8.96	13.82	1,000,000	134.2	2.4
3	1/26/2008	1.00	0.59	0.62	7,000	0.0	0.0
4	1/30/2008	32.00	0.82	0.97	30,000	1.0	0.0
5	2/1/2008	117.60	1.73	2.14	90,000	10.6	13.9
б	2/6/2008	570.67	10.55	10.95	675,000	385.2	418.0
7	2/12/2008	28.00	1.14	1.28	1,600	0.0	12.9
8	2/13/2008	19.00	3.91	3.91	120,000	2.3	0.0
9	2/21/2008	6.00	1.85	2.08	0	0.0	0.0
10	2/22/2008	8.00	1.71	1.96	9,000	0.1	3.0
11	3/4/2008	143.00	11.26	12.63	500,000	71.5	852.3

on January 10th, there was some amount of precipitation that followed a Type II distribution. Therefore, the model not appropriately reacting to an over-night storm is due to the model's daily time step computations as well as the same precipitation distribution type (from the NRCS TR-55 runoff computations) based on the location of the study.

To visually understand the measured versus predicted suspended sediment values for each sub-watershed, see Figures C.27 through C.30. It must be noted that only a few suspended sediment samples were measured in the time interval shown on the figures. Therefore, the measured suspended sediment values are not continuous in time, so there are several increases in suspended sediment shown by AnnAGNPS that were not measured in the field. To help provide insight on when the measured suspended sediment samples were taken, a numerical concentration value is shown above the measured bars.

From using the outlet of each subwatershed to calibrate the actual to predicted runoff and sediment yield values naturally occurring, each RGA point where fine bed sediment deposits were collected in the streams would be set as a different watershed outlet to provide an annual average sediment yield value in terms of clays, silts, and sands. For each sample site where suspended sediment was collected, the AnnAGNPS program would only consider the area and its contents of each subwatershed draining into that point of interest. Since the fine streambed sediment deposits were collected during the spring, summer, and fall of 2007, the AnnAGNPS model provided the sediment yield on average annual values of years 2006 and 2007 at each deposition point.

Figure C.27. Comparisons of measured and modeled suspended sediment for Brimstone Creek.

Figure C.28. Comparisons of measured and modeled suspended sediment for Ligias Fork.

Figure C.29. Comparisons of measured and modeled suspended sediment for Montgomery Fork.

Figure C.30. Comparisons of measured and modeled suspended sediment for Smokey Creek.

APPENDIX D:

ConCEPTS Model: Data Inputs

NOTES

Note 1: CS = cross-section

Note2: If one size fraction is identified in sediment distribution - fraction is assumed as bedrock. *Note 3:* 'Sediment' is bed material and 'soil' is bank material. Soil properties from banks were a reach composite as a representative estimate for the bank material.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	90	90	230	65
2	60	70	50	140
3	50	120	70	90
4	90	150	75	65
5	85	155	110	100
6	80	80	60	100
7	40	110	150	80
8	60	50	140	50
9	50	130	65	140
10	100	20	70	60
11	75	30	130	70
12	165	40	105	200
13	135	50	130	50
14	150	200	130	70
15	70	70	140	30
16	150	90	75	130
17	80	80	140	70
18	40	220	110	90
19	80	100	170	40
20	65	220	30	110
21	200	110	65	100
22	80	250	130	80
23	100	30	75	70
24	90	100	250	100
25	115	60	140	200
	Pebbl	e Count Perfor	med at X6	

Table D.1. Brimstone pebble count data at cross-section X6.

Table D.2. Brimstone pebble count summary for cross-section X6.

Minimum Dia. (mm)	20
Maximum Dia. (mm)	250
d16 (mm)	50
d50 (mm)	90
d84 (mm)	140
d90 (mm)	165

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	0	0
Very coarse sand	2	1	0	0
Very fine gravel	4	2	0	0
Fine gravel	8	4	0	0
Medium gravel	16	8	0	0
Coarse cravel	32	16	5	5
Very coarse gravel	64	32	16	21
Small cobbles	128	64	79	100

Table D.3. Brimstone sediment grain size distribution for cross-section X6. Units in mm for sediment ranges.

Table D.4. Brimstone sediment profile. Units in m.

Name:	SED Profile		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SED	0.0	100.0

Grain size distribution					
Total clay	1.28				
Very fine silt	2.51				
Fine silt	2.86				
Medium silt	6.20				
Coarse silt	7.79				
Very coarse silt	9.37				
Very fine sand	39.68				
Fine sand	66.57				
Medium sand	82.78				
Coarse sand	82.78				
Very coarse sand	90.63				
Very fine gravel	92.47				
Fine gravel	96.67				
Medium gravel	100.00				
Coarse cravel	100.00				
Very coarse gravel	100.00				
Small cobbles	100.00				

Table D.5. Brimstone soil definition. Distributions expressed as cumulative percentages.

Table D.6. Brimstone left bank soil profile. Depth units in m.

Name:	Left Bank		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL	0.0	100.0

	Geometry		Name:	X8(Downstream)
ID	Station	Elevation	River station:	0.8238
1	0.00	35.00	Indices of the toe and top of the bank	
2	8.00	33.00	Top of left bank:	5
3	15.00	31.75	Toe of left bank:	17
4	20.00	31.50	Top of right bank:	34
5	24.00	31.00	Toe of right bank:	31
6	25.00	30.37	Groundwater tabl	e
7	26.22	30.24	Left bank:	0.0
8	27.44	30.15	Right bank:	0.0
9	28.35	29.95	Bedrock elevation	1
10	29.57	29.89	Bedrock elevation:	0.0
11	30.79	29.88	Boundary roughne	SS
12	31.40	29.87	Left floodplain:	0.05
13	32.01	29.83	Left bank:	0.04
14	32.62	29.82	Streambed:	0.035
15	33.23	29.81	Right bank:	0.04
16	33.84	29.80	Right floodplain:	0.05
17	34.45	29.52	Boundary materials	
18	35.06	29.51	Bed sediment profile:	SED Profile
19	35.67	29.50	Left bank soil profile:	Left Bank
20	36.28	29.49	Right bank soil profile:	Right Bank
21	36.89	29.48		
22	37.50	29.47		
23	38.11	29.46		
24	38.72	29.45		
25	39.33	29.45		
26	39.94	29.42		
27	40.55	29.31		
28	41.16	29.30		
29	41.77	29.27		
30	42.38	29.37		
31	42.99	29.41		
32	43.60	29.79		
33	44.21	30.69		
34	44.82	30.83		
35	50.00	31.00		
36	53.00	33.00		
37	60.00	35.00		

Table D.7. Brimstone cross section X8. Units in m.

	Geometry		Name:	X7
ID	Station	Elevation	River station:	0.6957
1	-200.00	37.50	Indices of the toe and top of	f the bank
2	-100.00	34.00	Top of left bank:	4
3	0.00	33.71	Toe of left bank:	7
4	21.34	32.49	Top of right bank:	36
5	21.35	30.96	Toe of right bank:	24
6	21.95	30.55	Groundwater tabl	e
7	22.56	30.39	Left bank:	0.0
8	23.17	30.36	Right bank:	0.0
9	23.78	30.35	Bedrock elevation	1
10	24.39	30.34	Bedrock elevation:	0.0
11	25.00	30.31	Boundary roughne	SS
12	25.61	30.24	Left floodplain:	0.05
13	26.22	30.21	Left bank:	0.04
14	26.83	30.24	Streambed:	0.035
15	27.44	30.24	Right bank:	0.04
16	28.05	30.33	Right floodplain:	0.05
17	28.66	30.34	Boundary material	ls
18	29.27	30.37	Bed sediment profile:	SED Profile
19	29.88	30.40	Left bank soil profile:	Left Bank
20	30.49	30.41	Right bank soil profile:	Right Bank
21	31.10	30.42		
22	31.71	30.43		
23	32.32	30.44		
24	32.93	30.45		
25	33.84	30.50		
26	34.76	30.63		
27	35.37	30.68		
28	35.98	30.82		
29	36.59	30.88		
30	37.20	31.00		
31	37.81	31.04		
32	38.42	31.06		
33	38.72	31.53		
34	39.64	31.54		
35	41.16	31.69		
36	42.68	31.70		
37	73.17	32.01		
38	76.22	35.06		
39	78.00	35.50		
40	85.00	36.00		
41	100.00	37.50		

Table D.8. Brimstone cross section X7. Units in m.

	Geometry		Name:	X6
ID	Station	Elevation	River station:	0.5329
1	-3.00	43.00	Indices of the toe and top of the bank	
2	0.00	41.00	Top of left bank:	2
3	0.46	32.63	Toe of left bank:	3
4	2.90	32.25	Top of right bank:	35
5	3.81	31.89	Toe of right bank:	33
6	4.42	31.63	Groundwater table	9
7	5.03	31.57	Left bank:	0.0
8	5.64	31.51	Right bank:	0.0
9	6.25	31.45	Bedrock elevation	
10	6.86	31.43	Bedrock elevation:	0.0
11	7.47	31.37	Boundary roughnes	55
12	8.08	31.36	Left floodplain:	0.05
13	8.69	31.35	Left bank:	0.04
14	9.30	31.34	Streambed:	0.035
15	9.91	31.30	Right bank:	0.04
16	10.52	31.29	Right floodplain:	0.05
17	11.13	31.19	Boundary material	S
18	11.74	31.20	Bed sediment profile:	SED Profile
19	12.35	31.21	Left bank soil profile:	Left Bank
20	12.96	31.22	Right bank soil profile:	Right Bank
21	13.57	31.27		
22	14.18	31.31		
23	14.79	31.32		
24	15.40	31.34		
25	15.70	31.54		
26	16.31	31.65		
27	16.92	31.75		
28	17.53	31.85		
29	18.14	31.89		
30	19.06	32.08		
31	19.67	32.19		
32	20.27	32.37		
33	20.88	32.61		
34	22.87	33.37		
35	25.92	33.54		
36	28.96	35.06		
37	32.01	35.98		
38	35.06	37.50		
39	41.16	39.02		
40	44.21	41.00		
41	45.00	41.25		
42	47.00	43.00		

Table D.9. Brimstone cross section X6. Units in m.

	Geometry		Name:	X5
ID	Station	Elevation	River station:	0.4558
1	0.00	37	Indices of the toe and top of the bank	
2	4.00	34.25	Top of left bank:	3
3	7.66	34.05	Toe of left bank:	4
4	8.57	31.92	Top of right bank:	29
5	9.18	31.82	Toe of right bank:	20
6	9.79	31.70	Groundwater tabl	e
7	10.40	31.68	Left bank:	0.0
8	11.01	31.66	Right bank:	0.0
9	11.62	31.64	Bedrock elevation	
10	12.23	31.62	Bedrock elevation:	0.0
11	12.84	31.60	Boundary roughne	ss
12	13.45	31.58	Left floodplain:	0.05
13	14.06	31.53	Left bank:	0.04
14	14.67	31.51	Streambed:	0.035
15	15.28	31.47	Right bank:	0.04
16	15.89	31.45	Right floodplain:	0.05
17	16.50	31.44	Boundary materials	
18	17.11	31.40	Bed sediment profile:	SED Profile
19	17.72	31.45	Left bank soil profile:	Left Bank
20	18.33	31.54	Right bank soil profile:	Right Bank
21	18.63	31.85		
22	19.55	32.04		
23	21.07	32.25		
24	22.60	32.30		
25	24.12	32.42		
26	25.65	32.49		
27	29.00	32.80		
28	32.05	32.98		
29	33.57	33.10		
30	34.18	33.44		
31	34.49	33.90		
32	37.00	37.00		

Table D.10. Brimstone cross section X5. Units in m.

	Geometry		Name:	X4
ID	Station	Elevation	River station:	0.4101
1	0.00	37.00	Indices of the toe and top o	f the bank
2	2.50	36.00	Top of left bank:	4
3	12.50	35.00	Toe of left bank:	11
4	17.50	33.54	Top of right bank:	33
5	20.55	32.93	Toe of right bank:	27
6	21.77	32.85	Groundwater tabl	e
7	22.99	32.80	Left bank:	0.0
8	26.04	32.78	Right bank:	0.0
9	26.65	32.60	Bedrock elevation	1
10	27.26	32.53	Bedrock elevation:	0.0
11	27.56	32.25	Boundary roughne	SS
12	28.17	32.20	Left floodplain:	0.05
13	28.78	32.19	Left bank:	0.04
14	29.39	32.18	Streambed:	0.035
15	30.00	32.17	Right bank:	0.04
16	30.61	32.16	Right floodplain:	0.05
17	31.22	32.15	Boundary materials	
18	31.83	32.14	Bed sediment profile:	SED Profile
19	32.44	32.05	Left bank soil profile:	Left Bank
20	33.05	32.03	Right bank soil profile:	Right Bank
21	33.66	31.95		
22	34.27	31.98		
23	34.88	32.05		
24	35.49	32.08		
25	36.10	32.10		
26	36.71	32.15		
27	37.32	32.16		
28	37.62	32.42		
29	38.23	32.49		
30	38.84	32.64		
31	40.06	32.65		
32	41.28	32.84		
33	41.89	33.24		
34	44.50	35.00		
35	47.50	36.00		
36	62.50	37.00		

Table D.11. Brimstone cross section X4. Units in m.

	Geometry		Name:	X3
ID	Station	Elevation	River station:	0.2463
1	-8.00	43.00	Indices of the toe and top of the bank	
2	-2.00	37.00	Top of left bank:	3
3	0.00	35.25	Toe of left bank:	7
4	2.13	34.25	Top of right bank:	29
5	2.74	33.93	Toe of right bank:	27
6	5.79	33.58	Groundwater tabl	e
7	7.01	33.40	Left bank:	0.0
8	7.62	33.39	Right bank:	0.0
9	8.23	33.38	Bedrock elevation	
10	8.84	33.37	Bedrock elevation:	0.0
11	9.45	33.36	Boundary roughne	ss
12	10.06	33.35	Left floodplain:	0.05
13	10.67	33.33	Left bank:	0.04
14	11.28	33.30	Streambed:	0.035
15	11.89	33.25	Right bank:	0.04
16	12.50	33.20	Right floodplain:	0.05
17	13.11	33.17	Boundary material	ls
18	13.72	33.10	Bed sediment profile:	SED Profile
19	14.33	33.06	Left bank soil profile:	Left Bank
20	14.94	32.84	Right bank soil profile:	Right Bank
21	15.55	33.10		
22	16.16	33.12		
23	16.77	33.13		
24	17.38	33.14		
25	18.60	33.15		
26	19.21	33.16		
27	19.82	33.17		
28	20.43	34.52		
29	22.87	35.21		
30	40.00	35.30		
31	50.00	40.00		
32	60.00	43.00		

Table D.22. Brimstone cross section X3. Units in m.

	Geometry		Name:	X2
ID	Station	Elevation	River station:	0.122
1	-3.00	39.00	Indices of the toe and top of the bank	
2	-1.00	37.00	Top of left bank:	3
3	0.00	36.59	Toe of left bank:	4
4	0.61	34.27	Top of right bank:	27
5	1.52	34.20	Toe of right bank:	23
6	3.96	34.11	Groundwater tabl	e
7	5.18	34.08	Left bank:	0.0
8	6.40	34.05	Right bank:	0.0
9	7.01	33.93	Bedrock elevation	1
10	7.62	33.87	Bedrock elevation:	0.0
11	8.23	33.84	Boundary roughne	SS
12	8.84	33.72	Left floodplain:	0.05
13	9.45	33.70	Left bank:	0.04
14	10.06	33.68	Streambed:	0.035
15	10.67	33.58	Right bank:	0.04
16	11.28	33.60	Right floodplain:	0.05
17	11.89	33.61	Boundary materia	ls
18	12.50	33.67	Bed sediment profile:	SED Profile
19	13.11	33.68	Left bank soil profile:	Left Bank
20	13.72	33.69	Right bank soil profile:	Right Bank
21	14.33	33.70		
22	14.94	33.73		
23	15.40	33.85		
24	15.85	34.36		
25	16.46	34.77		
26	17.07	35.23		
27	18.60	35.84		
28	23.17	36.28		
29	25.00	37.00		
30	27.00	39.00		

Table D.13. Brimstone cross section X2. Units in m.

	Geometry		Name:	X1(upstream)
ID	Station	Elevation	River station:	0.0
1	-70	39.5	Indices of the toe and top of the bank	
2	-62	38.75	Top of left bank:	4
3	-60.00	36.75	Toe of left bank:	8
4	2.75	36.50	Top of right bank:	29
5	3.05	36.37	Toe of right bank:	24
6	4.57	35.88	Groundwater tabl	e
7	5.18	35.78	Left bank:	0.0
8	5.79	35.60	Right bank:	0.0
9	6.40	35.60	Bedrock elevation	1
10	7.01	35.51	Bedrock elevation:	0.0
11	7.62	35.46	Boundary roughne	SS
12	8.23	35.38	Left floodplain:	0.05
13	8.84	35.28	Left bank:	0.04
14	9.45	35.26	Streambed:	0.035
15	10.06	35.24	Right bank:	0.04
16	10.67	35.22	Right floodplain:	0.05
17	11.28	35.20	Boundary materia	ls
18	11.89	35.19	Bed sediment profile:	SED Profile
19	13.11	35.16	Left bank soil profile:	Left Bank
20	13.72	35.28	Right bank soil profile:	Right Bank
21	14.33	35.34		
22	14.94	35.38		
23	15.55	35.42		
24	16.16	35.55		
25	16.62	36.05		
26	17.07	36.08		
27	17.68	36.22		
28	18.29	36.42		
29	18.40	36.50		
30	21.34	37.95		
31	23.50	38.75		
32	30.00	39.50		

Table D.14. Brimstone cross section X1. Units in m.

Table D.15. Brimstone sediment transport options.

Sediment transport options					
% fines for cohesion	100				
Downstream grade control	0				
Upstream capacity weighting	0				
Upstream boundary condition	AnnAGNPS				
Class	Fraction				
1	0.0				
2	0.0				
3	0.0				
4	0.0				
5	0.0				
6	0.0				
7	0.0				
8	0.0				
9	0.0				
10	0.0				
11	0.0				
12	100.0				
13	100.0				
14	100.0				
15	100.0				
16	100.0				
17	100.0				

Figure D.1. Brimstone cross section X8.

Figure D.2. Brimstone cross section X7.

Figure D.3. Brimstone cross section X6.

Figure D.4. Brimstone cross section X5.

Figure D.5. Brimstone cross section X4.

Figure D.6. Brimstone cross section X3.

Figure D.7. Brimstone cross section X2.

Figure D.8. Brimstone cross section X1.
Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	75	108	35	12
2	45	144	62	180
3	40	45	66	55
4	62	52	4	22
5	69	64	54	25
6	129	84	59	107
7	78	100	77	137
8	100	72	70	16
9	72	82	85	115
10	80	12	66	20
11	74	22	80	15
12	110	35	94	30
13	45	98	32	28
14	70	64	28	18
15	28	60	60	2
16	26	92	70	100
17	32	104	120	28
18	155	98	94	144
19	114	60	130	84
20	112	65	97	52
21	71	80	80	66
22	35	105	115	95
23	40	12	48	92
24	52	63	92	72
25	35	52	118	36

Table D.16. Ligias Fork pebble count data for cross-section X3.

Table D.17. Ligias Fork pebble count summary for cross-section X3.

Minimum Dia. (mm)	2
Maximum Dia. (mm)	180
d16 (mm)	28
d50 (mm)	66
d84 (mm)	105
d90 (mm)	115

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	0	0
Very coarse sand	2	1	0	0
Very fine gravel	4	2	1	1
Fine gravel	8	4	1	2
Medium gravel	16	8	4	6
Coarse cravel	32	16	12	18
Very coarse gravel	64	32	26	44
Small cobbles	128	64	56	100

Table D.18. Ligias Fork sediment grain size distribution for cross-section X3. Units in mm.

Table D.19. Ligias Fork sediment profile. Units in m.

Name:	SED Profile		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SED	0.0	100.0

ASTM Sieve Number	Sieve Opening (mm)	Mass Reatained (g)	% Passing
3/4	19	0.00	100.00
3/8	9.525	17.74	100.00
4	4.75	7.60	96.67
8	2.36	6.15	92.47
10	2	2.70	90.63
40	0.425	11.53	82.78
60	0.25	23.77	66.57
100	0.15	23.47	50.58
200	0.075	15.98	39.68
H-1	0.0341		9.37
H-2	0.0222		7.79
H-3	0.0131		6.20
H-4	0.0095		4.97
H-5	0.0069		2.86
H-6	0.0034		2.51
H-7	0.0014		1.28

Table D.20. Ligias Fork bank sieve analysis results (non-eroding bank).

Table D.21. Ligias Fork bank sieve analysis results (eroding bank).

ASTM Sieve Number	Sieve Opening (mm)	Mass Reatained (g)	% Passing
3/4	19	0.00	100
3/8	9.525	0.00	100
4	4.75	0.00	100
8	2.36	0.00	100
10	2	0.00	100
40	0.425	0.64	99.33
60	0.25	9.34	91.47
100	0.15	27.94	67.98
200	0.075	13.15	56.92
H-1	0.0300		23.55
H-2	0.0196		21.63
H-3	0.0119		18.76
H-4	0.0087		16.36
H-5	0.0063		14.20
H-6	0.0033		10.12
H-7	0.0014		6.04

CONCEPTS			
Total Clay	0-0.002	1.28	
Very Fine Silt	0.002-0.004	2.51	
Fine Silt	0.004-0.008	2.86	
Medium Silt	0.008-0.016	6.20	
Coarse Silt	0.016-0.031	7.79	
Very Coarse Silt	0.031-0.063	9.37	
Very Fine Sand	0.063-0.125	39.68	
Fine Sand	0.125-0.25	66.57	
Medium Sand	0.25-0.5	82.78	
Coarse Sand	0.5-1.0	82.78	
Very Coarse Sand	1.0-2.0	90.6	
Very Fine Gravel	2.0-4.0	92.5	
Fine Gravel	4.0-8.0	96.7	
Medium Gravel	8.0-16.0	100.0	
Coarse Gravel	16.0-32.0	100.0	
Very Coarse Gravel	32.0-64.0	100.0	
Small Cobbles	> 64.0	100.0	

Table D.22. Ligias Fork soil grain size distribution (non-eroding bank). Units in mm for sediment classes and distributions expressed as cumulative percentages.

Table D.23. Ligias Fork bank soil grain size distribution. Units in mm for sediment classes and distributions expressed as cumulative percentages.

CONCEPTS			
Total Clay	0-0.002	6.04	
Very Fine Silt	0.002-0.004	10.12	
Fine Silt	0.004-0.008	14.20	
Medium Silt	0.008-0.016	18.76	
Coarse Silt	0.016-0.031	23.55	
Very Coarse Silt	0.031-0.063	56.92	
Very Fine Sand	0.063-0.125	56.92	
Fine Sand	0.125-0.25	91.47	
Medium Sand	0.25-0.5	99.33	
Coarse Sand	0.5-1.0	99.33	
Very Coarse Sand	1.0-2.0	100.00	
Very Fine Gravel	2.0-4.0	100.00	
Fine Gravel	4.0-8.0	100.00	
Medium Gravel	8.0-16.0	100.00	
Coarse Gravel	16.0-32.0	100.00	
Very Coarse Gravel	32.0-64.0	100.00	
Small Cobbles	> 64.0	100.00	

Name:	Left Bank		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL	0.0	100.0

Table D.24. Ligias Fork left bank soil profile. Units in m.

Table D.25. Ligias Fork right bank soil profile. Units in m.

Name:	Right Bank	Right Bank	
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL	0.0	100.0

Table D.26. Ligias Fork eroding bank soil profile. Units in m.

Name:	Eroding Bank		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	Eroding Bank	0.0	100.0

	Geometry		Name: X1_(downst	
ID	Station (m)	Elevation (m)	River station:	0.5177
1	-25.00	35.54	Indices of the toe and top of the bank	
2	-10.00	33.50	Top of left bank:	5
3	0.00	32.59	Toe of left bank:	15
4	5.18	31.89	Top of right bank:	27
5	10.37	31.84	Toe of right bank:	25
6	11.89	30.59	Groundwater tabl	e
7	13.42	30.28	Left bank:	29.86
8	16.16	30.25	Right bank:	29.86
9	17.07	30.22	Bedrock elevation	l
10	18.29	30.21	Bedrock elevation:	0.0
11	19.51	30.20	Boundary roughne	SS
12	20.73	30.14	Left floodplain:	0.05
13	21.95	30.14	Left bank:	0.04
14	22.41	30.10	Streambed:	0.035
15	25.15	29.62	Right bank:	0.04
16	25.76	29.41	Right floodplain:	0.05
17	26.37	29.31	Boundary materia	s
18	27.13	29.17	Bed sediment profile:	SED Profile
19	27.44	29.14	Left bank soil profile:	Left Bank
20	28.05	29.11	Right bank soil profile:	Right Bank
21	28.66	29.12		
22	29.27	29.29		
23	29.88	29.36		
24	30.49	29.48		
25	30.79	29.49		
26	31.10	30.14		
27	32.62	32.15		
28	40.55	32.49		
29	43.60	35.54		

Table D.27. Ligias Fork cross section X1. Units in m.

Geometry			Name:	X2
ID	Station	Elevation	River station:	0.461
1	-30.00	35.36	Indices of the toe and top of	the bank
2	-15.00	34.25	Top of left bank:	6
3	-10.00	34.00	Toe of left bank:	7
4	0.00	32.93	Top of right bank:	29
5	17.38	32.50	Toe of right bank:	24
6	78.35	32.47	Groundwater table	9
7	80.79	30.40	Left bank:	30.72
8	87.20	30.37	Right bank:	30.72
9	87.81	30.32	Bedrock elevation	
10	88.41	30.18	Bedrock elevation:	0.0
11	89.02	30.14	Boundary roughnes	SS
12	90.24	30.13	Left floodplain:	0.05
13	91.16	30.12	Left bank:	0.04
14	93.29	30.11	Streambed:	0.035
15	94.51	30.10	Right bank:	0.04
16	95.73	30.09	Right floodplain:	0.05
17	96.95	30.08	Boundary material	S
18	98.48	30.01	Bed sediment profile:	SED Profile
19	99.39	29.97	Left bank soil profile:	Left Bank
20	100.31	30.03	Right bank soil profile:	Right Bank
21	101.22	30.10		
22	101.83	30.17		
23	102.44	30.38		
24	102.74	30.49		
25	103.96	30.55		
26	106.10	30.60		
27	108.23	30.70		
28	110.37	30.74		
29	113.11	32.11		
30	121.95	32.30		
31	125.61	32.31		
32	128.66	35.36		

Table D.28. Ligias Fork cross section X2. Units in m.

	Geometry		Name:	X3
ID	Station	Elevation	River station:	0.3268
1	-15.00	35.00	Indices of the toe and top of	the bank
2	-10.00	34.00	Top of left bank:	3
3	-2.50	33.76	Toe of left bank:	10
4	0.00	33.21	Top of right bank:	34
5	6.71	32.62	Toe of right bank:	27
6	8.23	32.54	Groundwater table	е
7	9.45	32.42	Left bank:	31.55
8	11.59	31.53	Right bank:	31.55
9	13.11	31.40	Bedrock elevation	4
10	14.33	31.04	Bedrock elevation:	0.0
11	15.85	31.01	Boundary roughnes	SS
12	17.07	31.00	Left floodplain:	0.05
13	18.29	30.99	Left bank:	0.04
14	19.51	30.98	Streambed:	0.035
15	20.73	30.97	Right bank:	0.04
16	21.95	30.96	Right floodplain:	0.05
17	23.17	30.95	Boundary material	S
18	24.39	30.94	Bed sediment profile:	SED Profile
19	25.61	30.93	Left bank soil profile:	Left Bank
20	26.83	30.92	Right bank soil profile:	Right Bank
21	28.05	30.91		
22	28.96	30.80		
23	30.18	30.81		
24	31.40	30.85		
25	33.84	30.92		
26	35.67	30.92		
27	37.20	30.93		
28	38.42	31.17		
29	39.02	31.36		
30	39.94	31.58		
31	40.85	32.02		
32	41.77	32.18		
33	42.68	32.24		
34	45.73	33.76		
35	50.00	34.25		
36	52.50	35.00		

Table D.29. Ligias Fork cross section X3. Units in m.

	Geometry		Name:	X4
ID	Station	Elevation	River station:	0.1744
1	-3.00	37.00	Indices of the toe and top of	f the bank
2	-2.50	36.00	Top of left bank:	6
3	0.00	35.35	Toe of left bank:	9
4	1.53	33.82	Top of right bank:	35
5	12.20	33.40	Toe of right bank:	18
6	15.24	33.35	Groundwater tabl	e
7	17.38	32.44	Left bank:	30.82
8	18.90	32.07	Right bank:	30.82
9	19.51	30.37	Bedrock elevation	l
10	19.97	30.13	Bedrock elevation:	0.0
11	20.58	30.10	Boundary roughne	SS
12	21.19	30.09	Left floodplain:	0.05
13	21.80	30.08	Left bank:	0.04
14	22.41	30.07	Streambed:	0.035
15	23.02	30.17	Right bank:	0.04
16	23.63	30.19	Right floodplain:	0.05
17	24.24	30.27	Boundary material	s
18	24.85	30.50	Bed sediment profile:	SED Profile
19	25.46	30.68	Left bank soil profile:	Left Bank
20	26.07	30.91	Right bank soil profile:	Right Bank
21	26.68	31.05		
22	26.98	31.27		
23	28.20	31.46		
24	29.42	31.60		
25	30.64	31.67		
26	31.86	31.81		
27	33.08	31.92		
28	34.30	31.93		
29	35.52	31.94		
30	36.13	31.95		
31	36.43	31.96		
32	38.26	31.97		
33	38.87	31.98		
34	39.18	31.99		
35	41.31	33.87		
36	100.15	35.06		
37	105.00	35.35		
38	110.00	36.00		
39	115.00	37.00		

Table D.30. Ligias Fork cross section X4. Units in m.

	Geometry		Name:	X5
ID	Station	Elevation	River station:	0.0872
1	-10.00	37.00	Indices of the toe and top of	the bank
2	-2.00	36.00	Top of left bank:	4
3	0.00	35.37	Toe of left bank:	14
4	0.91	35.12	Top of right bank:	39
5	3.05	33.14	Toe of right bank:	34
6	14.94	33.12	Groundwater table	9
7	17.07	33.10	Left bank:	32.03
8	20.12	32.92	Right bank:	32.03
9	23.17	32.80	Bedrock elevation	
10	25.61	32.77	Bedrock elevation:	0.0
11	28.05	32.62	Boundary roughnes	SS
12	29.27	31.87	Left floodplain:	0.05
13	30.49	31.64	Left bank:	0.04
14	31.10	31.60	Streambed:	0.035
15	32.01	31.59	Right bank:	0.04
16	32.62	31.58	Right floodplain:	0.05
17	33.23	31.52	Boundary material	S
18	33.84	31.51	Bed sediment profile:	SED Profile
19	34.15	31.43	Left bank soil profile:	Left Bank
20	34.45	31.42	Right bank soil profile:	Right Bank
21	34.76	31.37		
22	35.06	31.34		
23	35.37	31.32		
24	35.98	31.31		
25	36.28	31.30		
26	36.89	31.29		
27	37.50	31.28		
28	37.81	31.29		
29	38.11	31.30		
30	38.42	31.31		
31	38.72	31.46		
32	39.63	31.62		
33	40.55	31.65		
34	42.07	31.67		
35	42.68	33.27		
36	43.90	33.52		
37	45.73	33.59		
38	106.71	34.15		
39	114.33	35.37		
40	120.00	36.00		
41	140.00	37.00		

Table D.31. Ligias Fork cross section X5. Units in m.

	Geometry		Name:	X6_(upstream)
ID	Station	Elevation	River station:	0
1	-10.00	37.00	Indices of the toe and top of	f the bank
2	-5.00	36.00	Top of left bank:	4
3	0.00	35.37	Toe of left bank:	7
4	2.13	35.08	Top of right bank:	33
5	4.88	34.06	Toe of right bank:	27
6	7.32	33.31	Groundwater table	e
7	8.54	32.63	Left bank:	32.83
8	9.76	32.60	Right bank:	32.83
9	10.98	32.59	Bedrock elevation	l
10	12.20	32.58	Bedrock elevation:	0.0
11	13.41	32.57	Boundary roughnes	SS
12	14.63	32.56	Left floodplain:	0.05
13	15.85	32.55	Left bank:	0.04
14	17.07	32.50	Streambed:	0.035
15	18.29	32.48	Right bank:	0.04
16	19.51	32.43	Right floodplain:	0.05
17	20.73	32.35	Boundary material	s
18	21.95	32.28	Bed sediment profile:	SED Profile
19	23.17	32.16	Left bank soil profile:	Left Bank
20	24.39	32.15	Right bank soil profile:	Right Bank
21	25.61	32.14		
22	26.83	32.11		
23	28.05	32.08		
24	29.27	32.13		
25	30.49	32.13		
26	31.71	32.25		
27	32.93	32.39		
28	34.15	32.91		
29	37.50	33.71		
30	42.07	33.82		
31	48.00	34.05		
32	82.32	34.15		
33	89.94	35.37		
34	100.00	37.00		

Table D.32. Ligias Fork cross section X6. Units in m.

Figure D.9. Ligias Fork cross section X1.

Figure D.10. Ligias Fork cross section X2.

Figure D.11. Ligias Fork cross section X3.

Figure D.12. Ligias Fork cross section X4.

Figure D.13. Ligias Fork cross section X5.

Figure D.14. Ligias Fork cross section X6.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	125	39	86	68
2	35	24	36	73
3	78	31	72	31
4	92	22	54	80
5	44	6	65	125
6	8	11	29	77
7	52	10	82	156
8	16	12	30	85
9	22	34	25	78
10	63	4	18	23
11	28	2	6	124
12	14	6	10	152
13	38	9	4	136
14	42	1	7	80
15	34	110	4	42
16	25	22	2	48
17	30	18	3	110
18	40	115	12	38
19	26	60	6	26
20	14	126	2	18
21	22	50	2	10
22	34	145	22	6
23	30	75	113	8
24	6	130	132	6
25	28	88	178	4
	Pebble (Count Performe	ed at MFCS1	

Table D.33. Montgomery Fork pebble count data MFCS-X1.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	200	28	32	80
2	160	56	122	92
3	134	6	158	122
4	54	200	98	57
5	51	130	133	43
6	32	300	75	81
7	83	82	58	22
8	48	59	26	44
9	29	4	95	110
10	32	24	85	66
11	10	30	96	71
12	19	64	56	16
13	8	108	56	18
14	8	74	40	32
15	4	16	44	33
16	6	60	8	19
17	2	12	10	57
18	2	102	68	118
19	164	6	90	95
20	124	62	18	81
21	98	107	12	42
22	83	11	40	77
23	104	4	6	154
24	92	5	70	2
25	58	2	82	24
	Pebble (Count Performe	ed at MFCS3	

Table D.34. Montgomery Fork pebble count data MFCS-X3.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	220	173	100	43
2	44	25	108	56
3	265	85	54	32
4	62	55	90	46
5	142	52	47	139
6	48	61	20	84
7	8	66	12	75
8	98	29	21	79
9	133	56	35	88
10	56	154	34	112
11	104	17	82	42
12	107	80	98	26
13	133	79	46	115
14	38	21	16	106
15	58	41	22	15
16	66	16	2	11
17	140	22	4	8
18	122	4	85	58
19	33	6	32	62
20	12	25	84	26
21	185	33	45	82
22	74	66	109	116
23	210	131	224	4
24	28	2	124	18
25	112	46	138	39
	Pebble (Count Performe	ed at MFCS4	

Table D.35. Montgomery Fork pebble count data MFCS-X4.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	8	85	16	18
2	85	10	110	70
3	140	1	118	14
4	30	44	63	12
5	80	340	92	49
6	70	152	36	21
7	4	1	123	106
8	270	62	108	2
9	15	285	54	16
10	114	12	102	34
11	32	164	112	2
12	152	2	52	38
13	98	1	42	26
14	66	8	4	18
15	220	148	104	132
16	39	39	59	60
17	1	160	80	128
18	78	158	17	104
19	18	56	198	212
20	160	6	85	36
21	83	85	100	75
22	166	8	2	94
23	40	175	13	126
24	2	42	3	68
25	51	108	62	20
	Pebble (Count Performe	ed at MFCS7	

Table D.36. Montgomery Fork pebble count data MFCS-X7.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	12	122	160	48
2	4	198	132	226
3	2	104	102	182
4	1	6	105	270
5	1	31	284	190
6	2	56	214	112
7	4	58	80	244
8	12	160	236	290
9	6	10	42	87
10	6	420	42	68
11	2	344	242	24
12	3	152	198	34
13	220	112	222	252
14	15	108	288	218
15	50	118	364	166
16	18	89	125	74
17	26	168	158	108
18	51	262	6	178
19	46	32	146	194
20	188	215	52	104
21	135	20	68	112
22	55	18	146	82
23	260	148	158	44
24	68	54	124	28
25	154	23	132	262
	Pebble (Count Performe	ed at MFCS9	

Table D.37. Montgomery Fork pebble count data MFCS-X9.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)
1	104	50	34	16
2	102	24	48	40
3	110	29	24	12
4	6	25	2	18
5	6	10	42	108
6	10	26	45	25
7	19	21	37	14
8	15	24	14	12
9	22	16	96	8
10	17	41	74	18
11	18	55	12	14
12	21	42	26	14
13	28	22	21	26
14	41	51	22	2
15	13	39	24	48
16	26	30	30	20
17	28	16	154	12
18	16	23	12	92
19	30	36	10	128
20	22	62	10	64
21	16	18	18	32
22	49	32	2	12
23	43	38	17	13
24	36	42	2	60
25	50	33	20	21
	Pebble C	ount Performe	d at MFCS10	

Table D.38. Montgomery Fork pebble count data MFCS-X10.

Minimum Dia. (mm)	1		
Maximum Dia. (mm)	178		
d16 (mm)	6		
d50 (mm)	30		
d84 (mm)	88		
d90 (mm)	124		
Pebble Count Performed at MFCS1			

Table D.39. Summary of pebble count data (MFCS-X1).

Table D.40. Summary of pebble count data (MFCS-X3).

Minimum Dia. (mm)	2			
Maximum Dia. (mm)	300			
d16 (mm)	10			
d50 (mm)	56			
d84 (mm)	107			
d90 (mm)	124			
Pebble Count Performed at MFCS3				

Table D.41. Summary of pebble count data (MFCS-X4).

Minimum Dia. (mm)	2			
Maximum Dia. (mm)	265			
d16 (mm)	18			
d50 (mm)	56			
d84 (mm)	116			
d90 (mm)	138			
Pebble Count Performed at MFCS4				

Minimum Dia. (mm)	1			
Maximum Dia. (mm)	340			
d16 (mm)	8			
d50 (mm)	60			
d84 (mm)	132			
d90 (mm) 160				
Pebble Count Performed at MFCS7				

Table D.43. Summary of pebble count data (MFCS-X9).

Minimum Dia. (mm)	1			
Maximum Dia. (mm)	420			
d16 (mm)	15			
d50 (mm)	105			
d84 (mm)	220			
d90 (mm) 252				
Pebble Count Performed at MFCS9				

Table D.44. Summary of pebble count data (MFCS-X10).

Minimum Dia. (mm)	2			
Maximum Dia. (mm)	154			
d16 (mm)	12			
d50 (mm)	24			
d84 (mm)	49			
d90 (mm) 62				
Pebble Count Performed at MFCS10				

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	1	1
Very coarse sand	2	1	4	5
Very fine gravel	4	2	5	10
Fine gravel	8	4	10	20
Medium gravel	16	8	10	30
Coarse cravel	32	16	22	52
Very coarse gravel	64	32	18	70
Small cobbles	128	64	30	100
Pebble Count Performed at MFCS1				

Table D.45. Sediment grain size distribution (MFCS-X1). Units in mm.

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	0	0
Very coarse sand	2	1	4	4
Very fine gravel	4	2	3	7
Fine gravel	8	4	8	15
Medium gravel	16	8	7	22
Coarse cravel	32	16	15	37
Very coarse gravel	64	32	21	58
Small cobbles	128	64	42	100
Pebble Count Performed at MFCS3				

Table D.46. Sediment grain size distribution (MFCS-X3). Units in mm.

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	0	0
Very coarse sand	2	1	2	2
Very fine gravel	4	2	3	5
Fine gravel	8	4	3	8
Medium gravel	16	8	6	14
Coarse cravel	32	16	15	29
Very coarse gravel	64	32	27	56
Small cobbles	128	64	44	100
Pebble Count Performed at MFCS4				

Table D.47. Sediment grain size distribution (MFCS-X4). Units in mm.

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	4	4
Very coarse sand	2	1	5	9
Very fine gravel	4	2	3	12
Fine gravel	8	4	4	16
Medium gravel	16	8	8	24
Coarse cravel	32	16	9	33
Very coarse gravel	64	32	20	53
Small cobbles	128	64	47	100
Pebble Count Performed at MFCS7				

Table D.48. Sediment grain size distribution (MFCS-X7). Units in mm.

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	2	2
Very coarse sand	2	1	3	5
Very fine gravel	4	2	3	8
Fine gravel	8	4	4	12
Medium gravel	16	8	4	16
Coarse cravel	32	16	9	25
Very coarse gravel	64	32	13	38
Small cobbles	128	64	62	100
Pebble Count Performed at MFCS9				

Table D.49. Sediment grain size distribution (MFCS-X9). Units in mm.

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	0	0
Very coarse sand	2	1	4	4
Very fine gravel	4	2	0	4
Fine gravel	8	4	3	7
Medium gravel	16	8	22	29
Coarse cravel	32	16	37	66
Very coarse gravel	64	32	25	91
Small cobbles	128	64	9	100
Pebble Count Performed at MFCS10				

Table D.50. Sediment grain size distribution (MFCS-X10). Units in mm.

Table D.51. Montgomery Fork sediment profile (typical). Units in m.

Name:	MFCS1_SEI		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	MFC1	0.0	1000.0

Grain size distribution			
Total clay	1.45		
Very fine silt	2.12		
Fine silt	3.17		
Medium silt	4.34		
Coarse silt	5.51		
Very coarse silt	6.18		
Very fine sand	20.99		
Fine sand	33.39		
Medium sand	38.30		
Coarse sand	38.30		
Very coarse sand	58.98		
Very fine gravel	66.44		
Fine gravel	85.50		
Medium gravel	93.02		
Coarse cravel	100.0		
Very coarse gravel	100.0		
Small cobbles	100.0		

Table D.52. Montgomery Fork bank soil profile (MFCS-X1). Distributions expressed as cumulative percentages.

Table D.53. Montgomery Fork bank soil profile (MFCS-X10). Distributions expressed as cumulative percentages.

Grain size distribution			
Total clay	0.05		
Very fine silt	0.09		
Fine silt	0.09		
Medium silt	0.12		
Coarse silt	0.15		
Very coarse silt	0.19		
Very fine sand	2.95		
Fine sand	4.26		
Medium sand	5.74		
Coarse sand	5.74		
Very coarse sand	42.11		
Very fine gravel	46.73		
Fine gravel	58.25		
Medium gravel	67.26		
Coarse cravel	100.0		
Very coarse gravel	100.0		
Small cobbles	100.0		

Name:	MFCS1-Soil_Profile		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL	0.0	100.0

Table D.54. Montgomery Fork bank soil profile (MFCS-X1). Units in m.

Geometry			Name:	X1 (Downstream)
ID	Station (m)	Elevation (m)	River station:	0.6889
1	-25.00	366.00	Indices of the toe and top of the bank	
2	-15.00	364.00	Top of left bank:	4
3	0.00	362.70	Toe of left bank:	14
4	1.30	362.69	Top of right bank:	29
5	3.40	362.31	Toe of right bank:	23
6	6.00	361.81	Groundwater table	
7	7.40	361.79	Left bank:	0.0
8	7.75	361.51	Right bank:	0.0
9	8.30	361.02	Bedrock elevati	on
10	9.35	360.52	Bedrock elevation:	358.50
11	10.90	360.42	Boundary rough	ness
12	11.40	360.22	Left floodplain:	0.05
13	12.30	360.17	Left bank:	0.04
14	13.10	359.98	Streambed:	0.035
15	14.20	359.55	Right bank:	0.04
16	15.50	359.49	Right floodplain:	0.05
17	17.00	359.53	Boundary materials	
18	18.20	359.63	Bed sediment profile:	MFCS1_SEDIMENT
19	19.80	359.67	Left bank soil profile:	MFCS1-Soil_profile
20	21.20	359.68	Right bank soil profile:	MFCS1-Soil_profile
21	22.85	359.72		
22	24.00	359.74		
23	25.60	359.90		
24	27.60	360.39		
25	27.65	360.40		
26	28.80	361.23		
27	29.20	361.48		
28	31.10	361.72		
29	33.80	362.06		
30	37.60	362.12		
31	50.00	363.00		
32	65.00	365.00		
33	70.00	366.00		

Table D.55. Montgomery Fork cross section (CS) X1. Units in m.

	Geometry		Name: X2	
ID	Station	Elevation	River station:	0.6192
1	-75.00	366.00	Indices of the toe and top	of the bank
2	-50.00	365.00	Top of left bank:	8
3	-25.00	363.00	Toe of left bank:	20
4	0.00	362.65	Top of right bank:	34
5	2.50	362.64	Toe of right bank:	26
6	5.50	362.60	Groundwater ta	ble
7	7.30	362.55	Left bank:	0.0
8	10.70	362.51	Right bank:	0.0
9	12.30	362.31	Bedrock elevati	on
10	15.30	361.97	Bedrock elevation:	358.50
11	18.20	361.94	Boundary rough	ness
12	19.70	361.67	Left floodplain:	0.05
13	21.00	361.15	Left bank:	0.04
14	21.50	361.09	Streambed:	0.035
15	23.00	360.97	Right bank:	0.04
16	24.60	360.56	Right floodplain:	0.05
17	25.60	360.42	Boundary mater	ials
18	26.50	360.32	Bed sediment profile:	MFCS1_SEDIMENT
19	27.90	360.21	Left bank soil profile:	MFCS1-Soil_profile
20	28.90	360.09	Right bank soil profile:	MFCS1-Soil_profile
21	30.30	359.82		
22	31.50	359.63		
23	32.10	359.52		
24	32.20	359.70		
25	33.00	359.96		
26	33.80	360.18		
27	34.70	360.24		
28	35.20	360.87		
29	36.10	360.91		
30	36.90	360.99	4	
31	37.40	361.68	4	
32	38.40	361.70	4	
33	38.50	361.72		
34	39.60	362.57		
35	41.40	362.64	1	
36	43.30	362.72	4	
37	46.50	363.03	4	
38	50.00	363.50	4	
39	65.00	365.00	1	
40	70.00	366.00	1	

Table D.56. Montgomery Fork cross section X2. Units in m.

Geometry Name:		X3		
ID	Station	Elevation	River station:	0.5637
1	-65.00	367.00	Indices of the toe and top of the bank	
2	-35.00	363.00	Top of left bank:	3
3	0.00	362.72	Toe of left bank:	6
4	3.10	362.48	Top of right bank:	25
5	4.50	361.69	Toe of right bank:	21
6	5.65	360.68	Groundwater ta	ble
7	6.50	360.54	Left bank:	0.0
8	7.70	360.62	Right bank:	0.0
9	9.20	360.70	Bedrock elevation	
10	10.40	360.72	Bedrock elevation:	359.5
11	11.50	360.74	Boundary roughness	
12	12.60	360.80	Left floodplain:	0.05
13	13.60	360.82	Left bank:	0.04
14	14.50	360.84	Streambed:	0.035
15	15.50	360.86	Right bank:	0.04
16	16.50	360.88	Right floodplain:	0.05
17	17.35	360.90	Boundary materials	
18	18.60	360.92	Bed sediment profile:	MFCS3_SEDIMENT
19	19.50	360.94	Left bank soil profile:	MFCS1-Soil_profile
20	20.40	361.00	Right bank soil profile:	MFCS1-Soil_profile
21	22.20	361.15		
22	23.00	361.36		
23	23.30	361.59		
24	25.30	362.16		
25	28.20	363.49]	
26	30.00	363.56]	
27	45.00	364.00]	
28	70.00	367.00]	

Table D.57. Montgomery Fork cross section X3. Units in m.
Geometry			Name:	X4
ID	Station	Elevation	River station:	0.4729
1	-30.00	367.00	Indices of the toe and top	of the bank
2	-15.00	366.00	Top of left bank:	4
3	0.00	363.03	Toe of left bank:	8
4	4.15	362.81	Top of right bank:	23
5	5.30	362.14	Toe of right bank:	19
6	7.05	361.91	Groundwater ta	ble
7	8.30	361.61	Left bank:	0.0
8	9.00	361.48	Right bank:	0.0
9	10.10	361.45	Bedrock elevati	on
10	11.50	361.43	Bedrock elevation:	360.0
11	12.70	361.41	Boundary rough	ness
12	14.00	361.38	Left floodplain:	0.05
13	15.30	361.35	Left bank:	0.04
14	19.35	361.32	Streambed:	0.035
15	20.50	361.21	Right bank:	0.04
16	21.60	361.06	Right floodplain:	0.05
17	22.65	360.95	Boundary mater	ials
18	23.50	360.97	Bed sediment profile:	MFCS4_SEDIMENT
19	24.70	361.17	Left bank soil profile:	MFCS1-Soil_profile
20	25.30	361.55	Right bank soil profile:	MFCS1-Soil_profile
21	27.35	362.01		
22	29.60	362.02		
23	34.00	362.64		
24	40.00	364.00]	
25	50.00	367.00]	

Table D.58.	Montgomery F	ork cross sectior	n X4. Units in m.

Geometry			Name:	X5	
ID	Station	Elevation	River station:	0.3972	
1	-25.00	367.00	Indices of the toe and top of the bank		
2	-10.00	365.00	Top of left bank:	4	
3	0.00	362.89	Toe of left bank:	17	
4	2.92	362.39	Top of right bank:	26	
5	4.46	362.35	Toe of right bank:	22	
6	6.57	362.26	Groundwater ta	ble	
7	8.13	361.90	Left bank:	0.0	
8	9.42	361.78	Right bank:	0.0	
9	10.68	361.66	Bedrock elevati	on	
10	11.99	361.50	Bedrock elevation:	359.6	
11	12.93	361.44	Boundary rough	ness	
12	13.85	361.40	Left floodplain:	0.05	
13	14.75	361.29	Left bank:	0.04	
14	15.75	361.19	Streambed:	0.035	
15	16.76	361.07	Right bank:	0.04	
16	17.50	360.94	Right floodplain:	0.05	
17	18.24	360.83	Boundary mater	ials	
18	19.07	360.74	Bed sediment profile:	MFCS4_SEDIMENT	
19	19.72	360.70	Left bank soil profile:	MFCS1-Soil_profile	
20	20.59	360.63	Right bank soil profile:	MFCS1-Soil_profile	
21	21.13	360.60			
22	21.48	360.77			
23	22.01	361.44			
24	22.52	361.83			
25	23.34	362.34			
26	24.61	362.93			
27	27.41	363.32			
28	31.41	363.72			
29	35.00	364.50			
30	37.00	365.75			
31	45.00	367.00			

Table D.59. Montgomery Fork cross section X5. Units in m.

Geometry			Name:	X6
ID	Station	Elevation	River station:	0.3145
1	-15.00	367.00	Indices of the toe and top	of the bank
2	-10.00	366.00	Top of left bank:	6
3	0.00	364.53	Toe of left bank:	10
4	2.22	364.06	Top of right bank:	36
5	4.23	363.69	Toe of right bank:	27
6	7.08	363.63	Groundwater ta	ble
7	8.52	363.18	Left bank:	0.0
8	9.97	362.55	Right bank:	0.0
9	10.36	362.24	Bedrock elevati	on
10	10.67	361.89	Bedrock elevation:	360.4
11	11.22	361.88	Boundary rough	ness
12	11.88	361.86	Left floodplain:	0.05
13	12.84	361.84	Left bank:	0.04
14	13.78	361.82	Streambed:	0.035
15	14.73	361.80	Right bank:	0.04
16	15.58	361.78	Right floodplain:	0.05
17	16.12	361.76	Boundary mater	ials
18	17.69	361.74	Bed sediment profile:	MFCS7_SEDIMENT
19	18.78	361.72	Left bank soil profile:	MFCS10-Soil_profile
20	19.78	361.70	Right bank soil profile:	MFCS10-Soil_profile
21	20.71	361.65		
22	21.72	361.59		
23	22.72	361.56		
24	23.83	361.49		
25	24.63	361.41		
26	25.30	361.37		
27	26.26	361.35		
28	26.82	361.56		
29	27.24	361.58		
30	27.39	361.99		
31	28.06	362.28		
32	28.61	362.53	1	
33	30.18	363.33	1	
34	31.70	363.46		
35	35.61	363.51	1	
36	45.97	363.98	1	
37	80.00	364.50	1	
38	100.00	367.00		

Table D.60. Montgomery Fork cross section X6. Units in m.

Geometry		Name:	X7	
ID	Station	Elevation	River station:	0.2091
1	0.00	371.25	Indices of the toe and top	of the bank
2	5.80	369.61	Top of left bank:	2
3	6.70	368.63	Toe of left bank:	7
4	10.05	364.87	Top of right bank:	38
5	12.10	363.22	Toe of right bank:	23
6	12.77	362.68	Groundwater ta	ble
7	13.07	362.04	Left bank:	0.0
8	13.48	361.90	Right bank:	0.0
9	14.11	361.84	Bedrock elevati	0 n
10	14.70	361.83	Bedrock elevation:	360.8
11	15.18	361.81	Boundary rough	ness
12	15.87	361.77	Left floodplain:	0.05
13	16.63	361.80	Left bank:	0.04
14	17.39	361.92	Streambed:	0.035
15	18.33	361.99	Right bank:	0.04
16	19.15	362.04	Right floodplain:	0.05
17	19.82	362.07	Boundary mater	ials
18	20.66	362.08	Bed sediment profile:	MFCS7_SEDIMENT
19	21.75	362.20	Left bank soil profile:	MFCS10-Soil_profile
20	22.92	362.37	Right bank soil profile:	MFCS10-Soil_profile
21	23.99	362.42		
22	24.85	362.55		
23	25.66	362.72		
24	26.55	362.75		
25	27.67	362.80		
26	28.95	362.82		
27	29.63	362.84		
28	30.25	362.86		
29	31.07	362.88		
30	32.26	362.90		
31	33.41	362.92	4	
32	35.56	363.14	4	
33	36.75	363.26	4	
34	38.27	363.30		
35	39.12	363.35		
36	39.91	363.70		
37	40.73	364.37	4	
38	42.41	364.63	4	
39	47.47	364.70	4	
40	50.00	365.00	4	
41	55.00	366.00	4	
42	65.00	370.00	4	
43	70.00	371.25		

Table D.61. Montgomery Fork cross section X7. Units in m.

Geometry			Name:	X8
ID	Station	Elevation	River station:	0.1158
1	-15.00	371.00	Indices of the toe and top	of the bank
2	-10.00	369.00	Top of left bank:	8
3	0.00	366.28	Toe of left bank:	15
4	4.48	364.76	Top of right bank:	34
5	6.92	364.64	Toe of right bank:	25
6	9.45	364.52	Groundwater ta	ble
7	11.82	364.42	Left bank:	0.0
8	13.71	364.36	Right bank:	0.0
9	14.80	364.20	Bedrock elevati	on
10	15.18	363.85	Bedrock elevation:	361.4
11	15.47	363.51	Boundary rough	ness
12	15.96	363.43	Left floodplain:	0.05
13	16.68	363.24	Left bank:	0.04
14	17.25	363.01	Streambed:	0.035
15	17.65	362.78	Right bank:	0.04
16	18.39	362.69	Right floodplain:	0.05
17	19.44	362.57	Boundary mater	ials
18	20.42	362.46	Bed sediment profile:	MFCS7_SEDIMENT
19	21.46	362.45	Left bank soil profile:	MFCS10-Soil_profile
20	22.54	362.43	Right bank soil profile:	MFCS10-Soil_profile
21	23.63	362.44		
22	24.85	362.46		
23	25.75	362.50		
24	26.67	362.59		
25	27.47	362.73		
26	28.17	362.86		
27	28.92	362.99		
28	29.96	363.01		
29	30.78	363.33		
30	31.52	363.65		
31	32.88	363.90		
32	38.42	364.09		
33	41.59	364.13		
34	44.56	364.71	1	
35	47.34	364.79	1	
36	55.00	365.50	1	
37	70.00	366.50	1	
38	80.00	368.00	1	
39	85.00	369.00	1	
40	95.00	371.00		

Table D.62. Montgomery Fork cross section X8. Units in m.

Geometry			Name:	X9
ID	Station	Elevation	River station:	0.0519
1	-30.00	372.00	Indices of the toe and top	of the bank
2	-25.00	370.00	Top of left bank:	5
3	-5.00	366.00	Toe of left bank:	11
4	0.00	365.39	Top of right bank:	33
5	6.01	365.30	Toe of right bank:	28
6	10.23	365.16	Groundwater ta	ble
7	12.32	364.90	Left bank:	0.0
8	13.83	364.45	Right bank:	0.0
9	15.66	363.85	Bedrock elevati	on
10	16.62	363.65	Bedrock elevation:	362.0
11	17.61	363.45	Boundary rough	ness
12	18.09	363.40	Left floodplain:	0.05
13	18.75	363.34	Left bank:	0.04
14	19.72	363.30	Streambed:	0.035
15	20.53	363.22	Right bank:	0.04
16	21.23	363.18	Right floodplain:	0.05
17	21.95	363.17	Boundary mater	ials
18	22.82	363.10	Bed sediment profile:	MFCS9_SEDIMENT
19	23.92	363.08	Left bank soil profile:	MFCS10-Soil_profile
20	24.72	363.06	Right bank soil profile:	MFCS10-Soil_profile
21	25.70	363.04		
22	26.44	363.02		
23	27.21	363.05		
24	28.15	363.10		
25	28.98	363.13		
26	29.94	363.19		
27	31.40	363.29		
28	32.33	363.40		
29	32.71	363.64		
30	33.67	363.94		
31	36.13	364.17		
32	38.96	364.77		
33	43.09	365.22	1	
34	53.39	365.56		
35	60.00	366.00	1	
36	70.00	367.50	1	
37	90.00	369.00	1	
38	100.00	372.00		

Table D.63. Montgomery Fork cross section X9. Units in m.

Geometry			Name:	X10 (Upstream)
ID	Station	Elevation	River station:	0.0
1	-150.00	372.00	Indices of the toe and top	of the bank
2	-125.00	370.00	Top of left bank:	3
3	-100.00	368.00	Toe of left bank:	12
4	-50.00	366.00	Top of right bank:	36
5	0.00	365.90	Toe of right bank:	30
6	9.49	365.85	Groundwater ta	ble
7	16.72	365.50	Left bank:	0.0
8	17.68	365.08	Right bank:	0.0
9	18.24	364.40	Bedrock elevati	on
10	18.82	364.13	Bedrock elevation:	362.4
11	19.34	363.81	Boundary rough	ness
12	19.82	363.65	Left floodplain:	0.05
13	20.34	363.60	Left bank:	0.04
14	21.19	363.58	Streambed:	0.035
15	22.43	363.52	Right bank:	0.04
16	23.35	363.50	Right floodplain:	0.05
17	24.37	363.48	Boundary mater	rials
18	25.34	363.46	Bed sediment profile:	MFCS10_SEDIMENT
19	26.49	363.44	Left bank soil profile:	MFCS10-Soil_profile
20	27.89	363.42	Right bank soil profile:	MFCS10-Soil_profile
21	29.09	363.40		
22	30.20	363.38		
23	31.34	363.54		
24	32.30	363.57		
25	33.18	363.60		
26	34.41	363.63		
27	35.15	363.65		
28	36.09	363.67		
29	36.99	363.69		
30	37.79	363.95		
31	38.13	364.10		
32	40.04	364.28		
33	41.51	364.79	1	
34	44.29	365.49	1	
35	47.00	367.84	1	
36	50.72	368.43	1	
37	75.00	370.00	1	
38	85.00	372.00		

Table D.64. Montgomery Fork cross section X10. Units in m.

Sediment transport options					
% fines for cohesion	100				
Downstream grade control	0				
Upstream capacity weighting	0				
Upstream boundary condition	AnnAGNPS				
Class	Fraction				
1	0.0				
2	0.0				
3	0.0				
4	0.0				
5	0.0				
6	0.0				
7	0.0				
8	0.0				
9	0.0				
10	0.0				
11	0.0				
12	0.0				
13	0.0				
14	0.0				
15	0.0				
16	0.0				
17	0.0				

Table D.65. Montgomery Fork sediment transport options.

Table D.66. Montgomery Fork simulation period. Time in mins.

Simulation Period				
Start time:	01/01/2005 01:00:00			
End Time:	12/31/2008 23:59:00			
Initial time step:	10			

Streambank erosion options					
Proccesses included in bank stability analyses:					
Included	Positive pore-water pressures				
Included	Matric Suction				
Included	Confining pressures				
Number of shear emergencies	4				
Tension crack depth	-1.0				
Skipped time steps	2				

Table D.67. Montgomery Fork streambank erosion options. Time in mins.

Figure D.15. Montgomery Fork cross section X1.

Figure D.16. Montgomery Fork cross section X2.

Figure D.17. Montgomery Fork cross section X3.

Figure D.18. Montgomery Fork cross section X4.

Figure D.19. Montgomery Fork cross section X5.

Figure D.20. Montgomery Fork cross section X6.

Figure D.21. Montgomery Fork cross section X7.

Figure D.22. Montgomery Fork cross section X8.

Figure D.23. Montgomery Fork cross section X9.

Figure D.24. Montgomery Fork cross section X10.

Number	Dia. (mm)	Dia. (mm)	Dia. (mm)	Dia. (mm)			
1	35	130	80	60			
2	50	100	130	40			
3	100	160	140	135			
4	45	130	60	80			
5	55	60	90	105			
6	90	70	240	95			
7	75	40	70	70			
8	125	120	110	50			
9	35	110	80	100			
10	40	60	90	100			
11	100	80	60	150			
12	200	100	105	130			
13	50	95	50	50			
14	130	70	80	45			
15	100	100	60	70			
16	210	90	90	45			
17	40	35	70	80			
18	90	70	60	80			
19	50	60	70	90			
20	45	50	70	75			
21	50	45	60	60			
22	95	55	100	40			
23	80	105	60	90			
24	65	105	125	115			
25	70	60	85	90			
	Pebble Count Performed at X3						

Table D.68. Smokey Creek pebble count data for cross-section X2.

Minimum Dia. (mm)	35			
Maximum Dia. (mm)	240			
d16 (mm)	50			
d50 (mm)	80			
d84 (mm)	110			
d90 (mm)	130			
Pebble Count Performed at X3				

Table D.69. Smokey Creek pebble count summary for cross-section X2.

Table D.70. Smokey Creek sediment	grain size	distribution f	for cross-section	X2. S	Sediment
ranges in mm.					

	Upper	Lower Bound	%	Cummulative %
Total clay	0.002	0.001	0	0
Very fine silt	0.004	0.002	0	0
Fine silt	0.008	0.004	0	0
Medium silt	0.016	0.008	0	0
Coarse silt	0.031	0.016	0	0
Very coarse silt	0.063	0.031	0	0
Very fine sand	0.125	0.063	0	0
Fine sand	0.25	0.125	0	0
Medium sand	0.5	0.25	0	0
Coarse sand	1	0.5	0	0
Very coarse sand	2	1	0	0
Very fine gravel	4	2	0	0
Fine gravel	8	4	0	0
Medium gravel	16	8	0	0
Coarse cravel	32	16	0	0
Very coarse gravel	64	32	35	35
Small cobbles	128	64	65	100
Pebble Count Performed at X3				

Name:	SED PROFILE	SED PROFILE		
Profile location				
Easting:	-99.0			
Northing:	-99.0			
Elevation:	-99.0			
Profile layers				
Number of layers:	1			
	Sediment	Top depth	Bottom depth	
Layer 1:	SED	0.0	100.0	

Table D.71. Smokey Creek sediment profile. Units in m.

Table D.72. Smokey Creek bank soil data at cross section X2. Units in mm for sediment classes and distributions expressed as cumulative percentages.

Total Clay	0-0.002	2.78
Very Fine Silt	0.002-0.004	4.75
Fine Silt	0.004-0.008	7.10
Medium Silt	0.008-0.016	11.02
Coarse Silt	0.016-0.031	18.08
Very Coarse Silt	0.031-0.063	32.00
Very Fine Sand	0.063-0.125	51.84
Fine Sand	0.125-0.25	86.42
Medium Sand	0.25-0.5	97.08
Coarse Sand	0.5-1.0	97.08
Very Coarse Sand	1.0-2.0	100.0
Very Fine Gravel	2.0-4.0	100.0
Fine Gravel	4.0-8.0	100.0
Medium Gravel	8.0-16.0	100.0
Coarse Gravel	16.0-32.0	100.0
Very Coarse Gravel	32.0-64.0	100.0
Small Cobbles	> 64.0	100.0

Total Clay	0-0.002	6.01
Very Fine Silt	0.002-0.004	10.15
Fine Silt	0.004-0.008	14.56
Medium Silt	0.008-0.016	19.74
Coarse Silt	0.016-0.031	26.47
Very Coarse Silt	0.031-0.063	63.91
Very Fine Sand	0.063-0.125	63.91
Fine Sand	0.125-0.25	92.50
Medium Sand	0.25-0.5	98.68
Coarse Sand	0.5-1.0	98.68
Very Coarse Sand	1.0-2.0	100.0
Very Fine Gravel	2.0-4.0	100.0
Fine Gravel	4.0-8.0	100.0
Medium Gravel	8.0-16.0	100.0
Coarse Gravel	16.0-32.0	100.0
Very Coarse Gravel	32.0-64.0	100.0
Small Cobbles	> 64.0	100.0

Table D.73. Smokey Creek bank soil data at cross section X2.5. Units in mm for sediment classes and distributions expressed as cumulative percentages.

Table D.74. Smokey Creek left bank soil profile. Units in m.

Name:	Left Bank		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL_BANK-X2	0.0	100.0

Name:	Right Bank		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL_BANK-X2	0.0	100.0

Table D.75. Smokey Creek right bank soil profile. Units in m.

Table D.76. Smokey Creek eroding bank soil profile. Units in m.

Name:	SOIL_BANK-X2.5		
Profile location			
Easting:	-99.0		
Northing:	-99.0		
Elevation:	-99.0		
Profile layers			
Number of layers:	1		
	Sediment	Top depth	Bottom depth
Layer 1:	SOIL_BANK-X2.5	0.0	100.0

	Geometry		Name:	X0 (downstream)
ID	Station (m)	Elevation (m)	River station:	1.295
1	-150.00	42.00	Indices of the toe and top	of the bank
2	-100.00	30.75	Top of left bank:	3
3	0.00	30.43	Toe of left bank:	6
4	1.83	30.20	Top of right bank:	20
5	4.88	28.36	Toe of right bank:	17
6	6.40	28.36	Groundwater ta	ble
7	7.93	28.34	Left bank:	0.0
8	9.45	28.34	Right bank:	0.0
9	10.98	28.30	Bedrock elevation	
10	12.50	28.28	Bedrock elevation:	0.0
11	14.02	28.04	Boundary roughness	
12	15.55	27.92	Left floodplain:	0.05
13	17.07	27.88	Left bank:	0.04
14	18.60	27.87	Streambed:	0.035
15	19.21	27.86	Right bank:	0.04
16	21.04	27.84	Right floodplain:	0.05
17	21.95	28.28	Boundary materials	
18	23.63	30.07	Bed sediment profile:	SED PROFILE
19	26.00	31.00	Left bank soil profile:	Left Bank
20	40.00	32.00	Right bank soil profile:	Right Bank
21	50.00	38.00		
22	75.00	42.00		

Table D.77. Smokey Creek cross section X0. Units in m.

	Geometry		Name:	X0.5
ID	Station	Elevation	River station:	1.1209
1	-100	42	Indices of the toe and top	of the bank
2	-50	31.25	Top of left bank:	3
3	0.00	30.97	Toe of left bank:	6
4	1.52	30.74	Top of right bank:	20
5	3.05	28.62	Toe of right bank:	16
6	3.96	28.21	Groundwater ta	ble
7	5.49	28.04	Left bank:	0.0
8	7.01	28.02	Right bank:	0.0
9	8.54	28.16	Bedrock elevati	ion
10	10.06	28.26	Bedrock elevation:	0.0
11	11.59	28.35	Boundary rough	ness
12	13.11	28.46	Left floodplain:	0.05
13	14.63	28.58	Left bank:	0.04
14	16.16	28.67	Streambed:	0.035
15	17.68	28.75	Right bank:	0.04
16	19.21	28.95	Right floodplain:	0.05
17	22.26	30.15	Boundary mater	rials
18	23.48	30.21	Bed sediment profile:	SED PROFILE
19	26.22	30.76	Left bank soil profile:	Left Bank
20	32.32	31.06	Right bank soil profile:	Right Bank
21	40.00	36.00		
22	55.00	37.00		
23	75.00	42.00		

Table D.78. Smokey Creek cross section X0.5. Units in m.

	Geometry		Name:	X1
ID	Station	Elevation	River station:	0.9184
1	-125.00	41.00	Indices of the toe and top	of the bank
2	-100.00	31.50	Top of left bank:	4
3	-25.00	31.25	Toe of left bank:	9
4	0.00	30.98	Top of right bank:	30
5	3.66	30.70	Toe of right bank:	27
6	4.88	30.41	Groundwater ta	ble
7	6.10	29.53	Left bank:	0.0
8	7.32	29.03	Right bank:	0.0
9	7.93	28.99	Bedrock elevati	on
10	8.84	28.97	Bedrock elevation:	0.0
11	9.76	28.96	Boundary rough	ness
12	10.67	28.95	Left floodplain:	0.05
13	11.59	28.94	Left bank:	0.04
14	12.50	28.93	Streambed:	0.035
15	13.42	28.92	Right bank:	0.04
16	14.33	28.91	Right floodplain:	0.05
17	15.24	28.90	Boundary materials	
18	16.16	28.85	Bed sediment profile:	SED PROFILE
19	17.07	28.76	Left bank soil profile:	Left Bank
20	17.99	28.77	Right bank soil profile:	Right Bank
21	18.90	28.78		
22	19.82	28.79		
23	20.73	28.80		
24	21.65	28.81		
25	22.56	28.82		
26	23.48	28.83		
27	24.09	28.84		
28	24.70	29.10		
29	25.61	30.51		
30	27.44	31.16		
31	30.18	31.30		
32	31.40	31.33		
33	32.62	31.43		
34	33.84	31.68	4	
35	35.06	32.21	4	
36	37.20	34.41	4	
37	40.00	37.00	4	
38	55.00	38.00	4	
39	60.00	41.00		

Table D.79. Smokey Creek cross section X1. Units in m.

Geometry		7	Name:	X2
ID	Station	Elevation	River station:	0.7794
1	-25.00	40.00	Indices of the toe and top	of the bank
2	-5.00	34.13	Top of left bank:	4
3	1.52	31.25	Toe of left bank:	8
4	62.50	31.09	Top of right bank:	28
5	64.02	30.74	Toe of right bank:	22
6	65.24	29.68	Groundwater tab	ole
7	66.46	29.51	Left bank:	0.0
8	67.07	29.33	Right bank:	0.0
9	67.99	29.25	Bedrock elevation	n
10	68.90	29.26	Bedrock elevation:	0.0
11	69.82	29.27	Boundary roughn	iess
12	70.73	29.35	Left floodplain:	0.05
13	71.65	29.35	Left bank:	0.04
14	72.56	29.36	Streambed:	0.035
15	73.48	29.43	Right bank:	0.04
16	74.39	29.50	Right floodplain:	0.05
17	75.92	29.62	Boundary materi	als
18	77.44	29.68	Bed sediment profile:	SED PROFILE
19	78.96	29.70	Left bank soil profile:	Left Bank
20	80.49	29.72	Right bank soil profile:	Right Bank
21	82.01	29.75		
22	83.54	29.79		
23	86.59	29.98		
24	89.63	30.36		
25	92.68	30.38		
26	93.29	30.40		
27	94.51	30.43		
28	96.95	31.55		
29	99.39	31.60		
30	112.81	31.65		
31	120.00	35.05		
32	140.00	40.00		

Table D.80. Smokey Creek cross section X2. Units in m.

Geometry			Name:	X2.5 - Eroding Bank
ID	Station	Elevation	River station:	0.5913
1	-100.00	40.00	Indices of the toe and top	of the bank
2	-75.00	32.50	Top of left bank:	3
3	0.00	32.28	Toe of left bank:	4
4	1.98	29.89	Top of right bank:	23
5	3.20	29.84	Toe of right bank:	20
6	4.42	29.85	Groundwater ta	ble
7	5.64	29.86	Left bank:	0.0
8	7.47	29.87	Right bank:	0.0
9	8.69	29.88	Bedrock elevati	on
10	9.91	29.90	Bedrock elevation:	0.0
11	11.13	30.04	Boundary rough	ness
12	12.65	30.18	Left floodplain:	0.05
13	14.18	30.24	Left bank:	0.04
14	15.70	30.30	Streambed:	0.035
15	17.23	30.32	Right bank:	0.04
16	18.75	30.35	Right floodplain:	0.05
17	21.80	30.39	Boundary mater	ials
18	24.54	30.65	Bed sediment profile:	SED PROFILE
19	34.60	30.70	Left bank soil profile:	SOIL_BANK-X2.5
20	41.62	30.75	Right bank soil profile:	Right Bank
21	44.67	33.80		
22	50.00	35.00]	
23	55.00	35.25]	
24	75.00	40.00]	

Table D.81. Smokey Creek cross section X2.5. Units in m.

Geometry		7	Name:	X3
ID	Station	Elevation	River station:	0.5008
1	-50.00	39.00	Indices of the toe and top	of the bank
2	-25.00	32.50	Top of left bank:	3
3	0.00	32.29	Toe of left bank:	9
4	2.74	32.09	Top of right bank:	26
5	5.49	31.78	Toe of right bank:	23
6	8.23	31.49	Groundwater ta	ble
7	10.67	30.80	Left bank:	0.0
8	11.89	30.64	Right bank:	0.0
9	12.81	30.49	Bedrock elevati	on
10	13.72	30.48	Bedrock elevation:	0.0
11	16.46	30.46	Boundary rough	ness
12	17.38	30.44	Left floodplain:	0.05
13	18.60	30.42	Left bank:	0.04
14	19.82	30.34	Streambed:	0.035
15	21.04	30.33	Right bank:	0.04
16	22.26	30.33	Right floodplain:	0.05
17	23.48	30.37	Boundary mater	ials
18	24.70	30.39	Bed sediment profile:	SED PROFILE
19	25.92	30.40	Left bank soil profile:	Left Bank
20	27.13	30.41	Right bank soil profile:	Right Bank
21	28.35	30.42		
22	29.57	30.43		
23	30.79	30.45		
24	33.23	30.77		
25	34.45	31.24		
26	35.06	31.90]	
27	41.16	31.93]	
28	47.00	34.97		
29	57.00	35.00]	
30	65.00	39.00		

Table D.82. Smokey Creek cross section X3. Units in m.

	Geometry		Name:	X4
ID	Station	Elevation	River station:	0.3584
1	-40.00	40.00	Indices of the toe and top of the bank	
2	-15.00	37.00	Top of left bank:	6
3	-5.00	35.00	Toe of left bank:	8
4	0.00	33.47	Top of right bank:	27
5	1.52	33.07	Toe of right bank:	24
6	7.01	32.77	Groundwater ta	ble
7	10.37	32.01	Left bank:	0.0
8	12.20	31.59	Right bank:	0.0
9	13.42	31.55	Bedrock elevati	on
10	16.46	31.43	Bedrock elevation:	0.0
11	19.21	31.33	Boundary rough	ness
12	20.43	31.24	Left floodplain:	0.05
13	21.65	31.23	Left bank:	0.04
14	22.87	31.19	Streambed:	0.035
15	24.09	31.16	Right bank:	0.04
16	25.31	31.15	Right floodplain:	0.05
17	26.52	31.14	Boundary mater	ials
18	27.74	31.10	Bed sediment profile:	SED PROFILE
19	28.96	31.13	Left bank soil profile:	Left Bank
20	30.18	31.15	Right bank soil profile:	Right Bank
21	32.01	31.16		
22	33.54	31.17		
23	34.76	31.18		
24	35.98	31.19		
25	36.89	31.70		
26	42.68	31.72		
27	46.00	33.15		
28	50.00	33.20		
29	52.13	33.22		
30	67.68	33.24		
31	75.00	34.76		
32	90.00	35.00		
33	120.00	40.00		

Table D.83. Smokey Creek cross section X4. Units in m.

Geometry			Name:	X5
ID	Station	Elevation	River station:	0.245
1	-25.00	37.00	Indices of the toe and top	of the bank
2	-10.00	33.50	Top of left bank:	3
3	0.00	33.02	Toe of left bank:	5
4	2.13	31.83	Top of right bank:	25
5	2.74	31.74	Toe of right bank:	17
6	3.96	31.57	Groundwater ta	ble
7	5.18	31.48	Left bank:	0.0
8	6.40	31.49	Right bank:	0.0
9	7.62	31.50	Bedrock elevati	on
10	8.84	31.51	Bedrock elevation:	0.0
11	10.06	31.60	Boundary rough	ness
12	11.28	31.62	Left floodplain:	0.05
13	12.50	31.65	Left bank:	0.04
14	13.72	31.68	Streambed:	0.035
15	14.94	31.70	Right bank:	0.04
16	16.16	31.74	Right floodplain:	0.05
17	16.77	31.85	Boundary mater	ials
18	20.43	32.14	Bed sediment profile:	SED PROFILE
19	21.34	32.40	Left bank soil profile:	Left Bank
20	22.26	32.45	Right bank soil profile:	Right Bank
21	23.78	32.50		
22	25.92	32.55		
23	28.05	32.60		
24	28.96	32.63]	
25	30.79	33.46]	
26	38.00	33.60]	
27	45.00	37.00		

Table D.84. Smokey Creek cross section X5. Units in m.

Geometry			Name:	X6
ID	Station	Elevation	River station:	0.129
1	-15.00	40.00	Indices of the toe and top	of the bank
2	-7.50	36.00	Top of left bank:	2
3	0.00	33.95	Toe of left bank:	5
4	1.52	33.86	Top of right bank:	27
5	6.10	32.40	Toe of right bank:	23
6	8.23	32.35	Groundwater ta	ble
7	9.45	32.33	Left bank:	0.0
8	10.67	32.27	Right bank:	0.0
9	11.89	32.18	Bedrock elevation	on
10	13.11	32.05	Bedrock elevation:	0.0
11	14.33	31.92	Boundary rough	ness
12	15.55	31.81	Left floodplain:	0.05
13	16.77	31.75	Left bank:	0.04
14	17.99	31.69	Streambed:	0.035
15	19.21	31.67	Right bank:	0.04
16	20.43	31.69	Right floodplain:	0.05
17	21.65	31.70	Boundary mater	ials
18	22.87	31.84	Bed sediment profile:	SED PROFILE
19	23.48	31.87	Left bank soil profile:	Left Bank
20	24.09	31.95	Right bank soil profile:	Right Bank
21	24.70	32.08		
22	27.13	32.63		
23	28.35	32.72		
24	31.10	33.47]	
25	32.32	33.78]	
26	40.00	34.25]	
27	50.00	38.00]	
28	65.00	40.00]	

Table D.85. Smokey Creek cross section X6. Units in m.

Geometry			Name:	X7 (upstream)
ID	Station	Elevation	River station:	0.0
1	-30.00	40.00	Indices of the toe and top	of the bank
2	-10.00	34.75	Top of left bank:	2
3	0.00	34.29	Toe of left bank:	7
4	2.44	34.02	Top of right bank:	25
5	4.88	33.70	Toe of right bank:	21
6	7.17	32.00	Groundwater ta	ble
7	7.93	31.86	Left bank:	0.0
8	8.84	31.81	Right bank:	0.0
9	9.76	31.91	Bedrock elevati	on
10	10.37	31.96	Bedrock elevation:	0.0
11	11.59	32.04	Boundary rough	ness
12	12.81	32.05	Left floodplain:	0.05
13	14.02	32.09	Left bank:	0.04
14	15.24	32.12	Streambed:	0.035
15	16.77	32.14	Right bank:	0.04
16	18.29	32.16	Right floodplain:	0.05
17	19.82	32.18	Boundary mater	ials
18	21.34	32.20	Bed sediment profile:	SED PROFILE
19	22.87	32.22	Left bank soil profile:	Left Bank
20	24.39	32.25	Right bank soil profile:	Right Bank
21	26.83	32.30		
22	29.57	33.84		
23	31.40	34.09		
24	32.93	34.12		
25	40.00	34.50		
26	60.00	40.00		

Table D.86. Smokey Creek cross section X7. Units in m.

Sediment transport options				
% fines for cohesion	100			
Downstream grade control	0			
Upstream capacity weighting	0			
Upstream boundary condition	AnnAGNPS			
Class	Fraction			
1	0.0			
2	0.0			
3	0.0			
4	0.0			
5	0.0			
6	0.0			
7	0.0			
8	0.0			
9	0.0			
10	0.0			
11	0.0			
12	100.0			
13	100.0			
14	100.0			
15	100.0			
16	100.0			
17	100.0			

Table D.87. Smokey Creek sediment transport options.

Table D.88. Smokey Creek simulation period. Time in mins.

Simulation Period			
Start time:	01/01/2005 02:00:00		
End Time:	12/31/2008 23:59:00		
Initial time step:	10		

Streambank erosion options			
Processes included in bank stability analyses:			
Included	Positive pore-water pressures		
Included	Matric Suction		
Included	Confining pressures		
Number of shear emergencies	4		
Tension crack depth	-1.0		
Skipped time steps	2		

Table D.89. Smokey Creek streambank erosion options. Time in mins.

Figure D.25. Smokey Creek cross section X0.

Figure D.26. Smokey Creek cross section X0.5.

Figure D.27. Smokey Creek cross section X1.

Figure D.28. Smokey Creek cross section X2.

Figure D.29. Smokey Creek cross section X2.5.

Figure D.30. Smokey Creek cross section X3.

Figure D.31. Smokey Creek cross section X4.

Figure D.32. Smokey Creek cross section X5.

Figure D.33. Smokey Creek cross section X6.

Figure D.34. Smokey Creek cross section X7.

APPENDIX E:

ConCEPTS Model: Output Figures

Figure E.1. Brimstone Creek cross section X1 (upstream).

Figure E.2. Brimstone Creek cross section X2.

Figure E.3. Brimstone Creek cross section X3.

Figure E.4. Brimstone Creek cross section X4.

Figure E.5. Brimstone Creek cross section X5.

Figure E.6. Brimstone Creek cross section X6.

Figure E.7. Brimstone Creek cross section X7.

Figure E.8. Brimstone Creek cross section X8 (downstream).

Figure E.9. Brimstone Creek bed elevation change.

Figure E.10. Ligias Fork cross section X1 (downstream).

Figure E.11. Ligias Fork cross section X2.

Figure E.12. Ligias Fork cross section X3.

Figure E.13. Ligias Fork cross section X4.

Figure E.14. Ligias Fork cross section X5.

Figure E.15. Ligias Fork cross section X6 (upstream).

MODEL KILOMETER

Figure E.16. Ligias Fork bed elevation change.

Figure E.17. Montgomery Fork cross section X1 (downstream).

Figure E.18. Montgomery Fork cross section X2.

Figure E.19. Montgomery Fork cross section X3.

Figure E.20. Montgomery Fork cross section X4.

Figure E.20. Montgomery Fork cross section X5.

Figure E.21. Montgomery Fork cross section X6.

Figure E.21. Montgomery Fork cross section X7.

Figure E.22. Montgomery Fork cross section X8.

Figure E.23. Montgomery Fork cross section X9.

Figure E.24. Montgomery Fork cross section X10 (upstream).

Figure E.25. Montgomery Fork bed elevation change.

Figure E.26. Smokey Creek cross section X0 (downstream).

Figure E.27. Smokey Creek cross section X0.5.

Figure E.28. Smokey Creek cross section X1.

Figure E.29. Smokey Creek cross section X2.

Figure E.30. Smokey Creek cross section X2.5.

Figure E.31. Smokey Creek cross section X3.

Figure E.32. Smokey Creek cross section X4.

Figure E.33. Smokey Creek cross section X5.

Figure E.34. Smokey Creek cross section X6.

Figure E.35. Smokey Creek cross section X7 (upstream).

MODEL KILOMETER

Figure E.36. Smokey Creek bed elevation change.

					Brimstor	ne Event File	e Summar	У					
		Time to Peak	Discharge		Time to Pea	ak Depth		Time to Pe	ak Stage		Time to Peak	c F. Slope	
				Peak			Peak			Peak			
Date	Time	Date	Time	Discharge	Date	Time	Depth	Date	Time	Stage	Date	Time	F. Slope
mm/dd/yyyy	hh:mm:ss	mm/dd/yyyy	hh:mm:ss	cms	mm/dd/yyyy	hh:mm:ss	m	mm/dd/yyyy	hh:mm:ss	m	mm/dd/yyyy	hh:mm:ss	
Initial	Initial												
01/01/2005	00:00:00			0.10			0.13			29.40	01/01/2005	01:17:02	7.19E-03
01/02/2005	00:00:00	01/02/2005	06:25:55	0.21	01/02/2005	06:25:55	0.20	01/02/2005	06:25:55	29.47	01/02/2005	02:49:15	7.19E-03
05/19/2005	00:00:00	05/19/2005	18:51:40	0.10	05/19/2005	18:51:40	0.11	05/19/2005	18:43:35	29.39	05/19/2005	08:53:30	7.30E-03
03/26/2006	00:00:00	03/26/2006	03:14:24	0.21	03/26/2006	03:14:24	0.13	03/26/2006	03:14:24	29.40	03/26/2006	01:29:06	7.34E-03
07/15/2006	00:00:00	07/15/2006	02:41:58	5.72	07/15/2006	02:41:58	0.55	07/15/2006	02:41:58	29.82	07/15/2006	00:29:38	7.38E-03
04/03/2007	00:00:00	04/03/2007	07:44:00	0.21	04/03/2007	07:44:00	0.13	04/03/2007	07:44:00	29.39	04/03/2007	15:32:04	7.45E-03
02/11/2008	00:00:00	02/11/2008	00:01:47	0.10	02/11/2008	00:01:47	0.11	02/11/2008	00:01:47	29.37	02/11/2008	18:36:13	7.42E-03
07/13/2008	00:00:00	07/13/2008	01:38:24	10.02	07/13/2008	01:38:24	0.71	07/13/2008	01:38:24	29.95	07/13/2008	00:20:24	7.74E-03
12/30/2008	00:00:00	12/29/2008	05:05:42	0.10	12/30/2008	01:58:04	0.11	12/30/2008	01:24:20	29.35	12/30/2008	00:59:02	7.56E-03

Table E.1. Brimstone event file summary. $cms = m^3/s$.

	Brimstone Event File Summary Storm event generated sediment yield Cumulative sediment yield											
		Stor	m event gene	rated sedimen	t yield		Cumulative	sediment yield	d			
Date	Time	Silt YLD	Sand YLD	Gravel YLD	Total YLD	Silt YLD	Sand YLD	Gravel YLD	Total YLD			
mm/dd/yyyy	hh:mm:ss	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)			
Initial	Initial											
01/01/2005	00:00:00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
01/02/2005	00:00:00	3.70E-01	0.00E+00	0.00E+00	3.70E-01	3.69E-01	0.00E+00	0.00E+00	3.69E-01			
05/19/2005	00:00:00	2.71E-02	0.00E+00	0.00E+00	2.71E-02	1.69E+02	3.12E-02	0.00E+00	1.69E+02			
03/26/2006	00:00:00	5.90E-02	0.00E+00	0.00E+00	5.90E-02	5.49E+02	1.73E+00	5.94E+00	5.57E+02			
07/15/2006	00:00:00	3.36E+00	2.46E-12	0.00E+00	3.36E+00	6.38E+02	1.75E+00	5.94E+00	6.46E+02			
04/03/2007	00:00:00	4.36E+00	0.00E+00	0.00E+00	4.36E+00	1.16E+03	1.63E+03	3.91E+02	3.18E+03			
02/11/2008	00:00:00	7.79E-02	0.00E+00	0.00E+00	7.79E-02	1.34E+03	1.64E+03	4.10E+02	3.39E+03			
07/13/2008	00:00:00	5.86E-01	2.65E-03	8.01E-03	5.96E-01	1.53E+03	1.66E+03	4.65E+02	3.66E+03			
12/30/2008	00:00:00	8.18E-02	0.00E+00	0.00E+00	8.18E-02	1.62E+03	1.67E+03	4.87E+02	3.77E+03			

Table E.1: Brimstone event file summary (*continued*). Tons are metric tons.

			Brimstone Event File Summary Cross sectional changes I Channel widths I Bank Heights BED MATERIAL											
			Cross section	onal chang	es	Chanı	nel widths	Bank 1	Heights		BEI	D MAT	ERIAL	<i>ـ</i> ـ
		Bed	Cumulative	Lat	Cumulative									
Date	Time	Change	bed change	Change	Lat change	Bottom	Floodplain	Left	Right	D16	D50	D84	D90	Dmean
mm/dd/yyyy	hh:mm:ss	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(mm)	(mm)	(mm)	(mm)	(mm)
Initial	Initial					8.54	20.82	1.48	1.42	52	83	111	117	75
01/01/2005	00:00:00	0.00	0.00	0.00	0.00	8.54	20.82	1.48	1.42	52	83	111	117	75
01/02/2005	00:00:00	0.00	0.00	0.00	0.00	8.54	20.82	1.48	1.42	52	83	111	117	75
05/19/2005	00:00:00	0.00	0.00	0.00	0.00	8.54	20.82	1.48	1.42	52	83	111	117	75
03/26/2006	00:00:00	0.00	0.00	0.00	0.00	8.54	20.82	1.48	1.42	54	83	111	117	75
07/15/2006	00:00:00	0.00	0.00	0.00	0.00	8.54	20.82	1.48	1.42	54	83	111	117	75
04/03/2007	00:00:00	0.00	-0.02	0.00	0.61	9.15	20.93	1.52	1.44	10	76	108	115	38
02/11/2008	00:00:00	0.00	-0.02	0.00	0.61	9.15	20.93	1.52	1.44	19	77	109	115	40
07/13/2008	00:00:00	0.00	-0.04	0.00	0.61	9.15	20.93	1.53	1.45	34	80	110	116	49
12/30/2008	00:00:00	0.00	-0.04	0.00	0.61	9.15	20.93	1.53	1.45	34	80	110	116	49

Table E.1. Brimstone event file summary (continued).

					Ligias	Event File S	Summary						
		Time to Peak	Discharge		Time to Pea	ak Depth		Time to Pe	ak Stage		Time to Peal	c F. Slope	
				Peak			Peak			Peak			
Date	Time	Date	Time	Discharge	Date	Time	Depth	Date	Time	Stage	Date	Time	F. Slope
mm/dd/yyyy	hh:mm:ss	mm/dd/yyyy	hh:mm:ss	(cms)	mm/dd/yyyy	hh:mm:ss	(m)	mm/dd/yyyy	hh:mm:ss	(m)	mm/dd/yyyy	hh:mm:ss	
Initial	Initial												
01/01/2005	00:00:00			0.51			0.23			29.35	01/01/2005	04:27:35	1.40E-02
01/02/2005	00:00:00	01/02/2005	04:12:35	2.51	01/02/2005	04:12:35	0.49	01/02/2005	04:12:35	29.60	01/02/2005	00:19:15	1.40E-02
05/19/2005	00:00:00	05/19/2005	09:14:12	0.51	05/19/2005	09:14:12	0.24	05/19/2005	09:14:12	29.35	05/19/2005	06:14:54	1.35E-02
03/26/2006	00:00:00	03/26/2006	01:04:48	0.50	03/26/2006	01:04:48	0.23	03/25/2006	12:09:00	29.35	03/26/2006	02:25:48	1.32E-02
07/15/2006	00:00:00	07/15/2006	03:11:06	29.93	07/15/2006	03:11:06	5.60	07/15/2006	03:11:06	34.72	07/15/2006	06:22:28	1.35E-02
04/03/2007	00:00:00	04/03/2007	03:09:26	9.86	04/03/2007	03:09:26	1.03	04/03/2007	03:09:26	30.14	04/02/2007	23:58:48	1.31E-02
02/11/2008	00:00:00	02/11/2008	09:16:45	0.59	02/11/2008	09:16:45	0.26	02/11/2008	09:16:45	29.37	02/11/2008	00:27:00	1.31E-02
07/13/2008	00:00:00	07/13/2008	02:11:08	20.91	07/13/2008	02:11:08	1.63	07/13/2008	02:11:08	30.74	07/13/2008	06:19:48	1.31E-02
12/30/2008	00:00:00	12/30/2008	02:00:13	3.43	12/30/2008	02:00:13	0.58	12/30/2008	02:00:13	29.69	12/30/2008	00:08:24	1.31E-02

Table E.2. Ligias Creek event file summary. $cms = m^3/s$.	
---	--

		Ligias Event File Summary Storm event generated sediment yield Cumulative sediment yield												
		Stor	m event gene	rated sedimen	t yield		Cumulative	sediment yield	l					
Date	Time	Silt YLD	Sand YLD	Gravel YLD	Total YLD	Silt YLD	Sand YLD	Gravel YLD	Total YLD					
mm/dd/yyyy	hh:mm:ss	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)					
Initial	Initial													
01/01/2005	00:00:00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
01/02/2005	00:00:00	1.59E+00	8.50E-13	0.00E+00	1.59E+00	1.59E+00	8.50E-13	0.00E+00	1.59E+00					
05/19/2005	00:00:00	1.30E-01	0.00E+00	0.00E+00	1.30E-01	6.01E+02	3.47E+01	3.99E+00	6.40E+02					
03/26/2006	00:00:00	7.73E-02	0.00E+00	0.00E+00	7.73E-02	1.80E+03	3.48E+01	4.15E+00	1.84E+03					
07/15/2006	00:00:00	2.36E+01	4.90E-03	0.00E+00	2.36E+01	2.17E+03	3.49E+01	4.18E+00	2.21E+03					
04/03/2007	00:00:00	8.84E+01	8.87E-05	0.00E+00	8.84E+01	3.50E+03	3.53E+01	4.55E+00	3.54E+03					
02/11/2008	00:00:00	1.37E+00	0.00E+00	0.00E+00	1.37E+00	4.27E+03	3.57E+01	4.70E+00	4.31E+03					
07/13/2008	00:00:00	1.61E+01	2.75E-02	8.54E-12	1.62E+01	4.90E+03	3.59E+01	4.75E+00	4.94E+03					
12/30/2008	00:00:00	2.33E+00	1.09E-12	0.00E+00	2.33E+00	5.13E+03	3.61E+01	6.41E+00	5.17E+03					

Table E.2. Ligias Creek event file summary (*continued*). Tons are metric tons.

					Ligias Event	File Sum	nary							
			Cross section	onal chang	es	Chan	nel widths	Bank 1	Heights		BEI	D MAT	ERIAI	_
		Bed	Cumulative	Lat	Cumulative									
Date	Time	Change	bed change	Change	Lat change	Bottom	Floodplain	Left	Right	D16	D50	D84	D90	Dmean
mm/dd/yyyy	hh:mm:ss	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(mm)	(mm)	(mm)	(mm)	(mm)
Initial	Initial					5.64	22.26	2.22	2.66	28	69	105	113	55
01/01/2005	00:00:00	0.00	0.00	0.00	0.00	5.64	22.26	2.22	2.66	28	69	105	113	55
01/02/2005	00:00:00	0.00	0.00	0.00	0.00	5.64	22.26	2.22	2.66	28	69	105	113	55
05/19/2005	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55
03/26/2006	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55
07/15/2006	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55
04/03/2007	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55
02/11/2008	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55
07/13/2008	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55
12/30/2008	00:00:00	0.00	0.00	0.00	0.00	5.64	22.72	2.22	2.68	28	69	105	113	55

 Table E.2. Ligias Creek event file summary (continued).

					Montgom	ery Event Fi	le Summa	ary					
		Time to Peak	Discharge		Time to Pea	ak Depth		Time to Pea	ak Stage		Time to Peak	κ F. Slope	
				Peak			Peak			Peak			
Date	Time	Date	Time	Discharge	Date	Time	Depth	Date	Time	Stage	Date	Time	F. Slope
mm/dd/yyyy	hh:mm:ss	mm/dd/yyyy	hh:mm:ss	(cms)	mm/dd/yyyy	hh:mm:ss	(m)	mm/dd/yyyy	hh:mm:ss	(m)	mm/dd/yyyy	hh:mm:ss	
Initial	Initial												
01/01/2005	00:00:00	01/01/2005	09:19:15	0.35	01/01/2005	09:19:15	0.22	01/01/2005	09:19:15	359.71	01/01/2005	09:19:15	3.33E-03
01/02/2005	00:00:00	01/02/2005	01:51:20	7.62	01/02/2005	01:51:20	0.62	01/02/2005	01:51:20	360.11	01/02/2005	01:59:54	6.58E-03
05/19/2005	00:00:00	05/19/2005	09:22:09	0.36	05/19/2005	09:22:09	0.24	05/19/2005	09:22:09	359.73	05/19/2005	09:14:08	1.99E-03
03/26/2006	00:00:00	03/26/2006	09:26:30	0.36	03/26/2006	09:17:55	0.42	03/26/2006	09:17:55	359.91	03/26/2006	09:26:30	1.08E-04
07/15/2006	00:00:00	07/15/2006	01:21:17	84.16	07/15/2006	01:21:17	1.99	07/15/2006	01:21:17	361.48	07/15/2006	01:21:17	3.58E-03
04/03/2007	00:00:00	04/03/2007	01:48:09	21.38	04/03/2007	01:48:09	0.95	04/03/2007	01:48:09	360.44	04/03/2007	05:59:45	6.57E-03
02/11/2008	00:00:00	02/11/2008	09:26:48	0.31	02/11/2008	09:26:48	0.20	02/11/2008	09:26:48	359.69	02/11/2008	00:26:13	5.77E-03
07/13/2008	00:00:00	07/13/2008	01:18:08	49.11	07/13/2008	01:18:08	1.35	07/13/2008	01:18:08	360.84	07/13/2008	01:18:08	5.46E-03
12/30/2008	00:00:00	12/30/2008	09:26:30	0.35	12/30/2008	09:26:30	0.23	12/30/2008	09:26:30	359.72	12/30/2008	01:00:05	3.34E-03

Table E.3. Montgomery Fork event file summary. $cms = m^3/s$.
--

	Montgomery Event File Summary Storm event generated sediment yield Cumulative sediment yield											
		Stor	n event gene	rated sedimen	t yield		Cumulative	sediment yield	1			
Date	Time	Silt YLD	Sand YLD	Gravel YLD	Total YLD	Silt YLD	Sand YLD	Gravel YLD	Total YLD			
mm/dd/yyyy	hh:mm:ss	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)			
Initial	Initial											
01/01/2005	00:00:00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
01/02/2005	00:00:00	8.45E+00	1.37E+00	1.00E+00	1.08E+01	8.52E+00	1.39E+00	1.01E+00	1.09E+01			
05/19/2005	00:00:00	1.58E+00	0.00E+00	0.00E+00	1.58E+00	2.17E+03	2.67E+03	2.31E+03	7.15E+03			
03/26/2006	00:00:00	6.92E-01	4.18E-24	0.00E+00	6.92E-01	7.81E+03	1.60E+04	1.44E+04	3.83E+04			
07/15/2006	00:00:00	8.61E+01	3.11E+00	1.60E+01	1.05E+02	8.72E+03	1.61E+04	1.48E+04	3.97E+04			
04/03/2007	00:00:00	1.13E+02	1.12E+01	5.53E+01	1.80E+02	1.38E+04	3.06E+04	2.24E+04	6.69E+04			
02/11/2008	00:00:00	7.29E+00	0.00E+00	0.00E+00	7.29E+00	1.60E+04	3.11E+04	2.50E+04	7.21E+04			
07/13/2008	00:00:00	2.34E+01	6.09E+00	1.21E+02	1.51E+02	1.86E+04	3.28E+04	2.98E+04	8.12E+04			
12/30/2008	00:00:00	2.38E+00	0.00E+00	0.00E+00	2.38E+00	2.00E+04	3.33E+04	3.27E+04	8.59E+04			

Table E.3. Montgomery Fork event file summary (*continued*). Tons are metric tons.

			Montgomery Event File Summary											
			Cross section	nal change	es	Chanı	nel widths	Bank I	Heights		BEI	D MAT	ERIAI	
		Bed	Cumulative	Lat	Cumulative									
Date	Time	Change	bed change	Change	Lat change	Bottom	Floodplain	Left	Right	D16	D50	D84	D90	Dmean
mm/dd/yyyy	hh:mm:ss	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(mm)	(mm)	(mm)	(mm)	(mm)
Initial	Initial					12.50	32.50	2.71	2.16	6	30	88	102	24
01/01/2005	00:00:00	0.00	0.00	0.00	0.00	12.50	32.50	2.71	2.16	6	30	88	102	24
01/02/2005	00:00:00	0.00	0.00	0.00	0.00	12.50	32.50	2.71	2.16	6	30	88	102	24
05/19/2005	00:00:00	0.00	0.00	0.00	0.75	13.25	33.25	2.71	2.17	6	30	88	102	24
03/26/2006	00:00:00	0.00	0.00	0.00	4.11	16.61	36.61	2.80	2.19	6	30	88	102	24
07/15/2006	00:00:00	0.00	0.00	0.00	4.11	16.61	36.61	2.80	2.19	6	30	88	102	24
04/03/2007	00:00:00	0.00	0.00	0.00	5.38	17.88	37.88	2.86	2.20	6	30	88	102	24
02/11/2008	00:00:00	0.00	0.00	0.00	5.49	17.99	37.99	2.87	2.20	6	30	88	102	24
07/13/2008	00:00:00	0.00	0.00	0.00	5.85	18.35	38.35	2.89	2.20	6	30	88	102	24
12/30/2008	00:00:00	0.00	0.00	0.00	5.91	18.41	38.41	2.90	2.20	6	30	88	102	24

Table E.3. Montgomery Fork event file summary (*continued*).

					Smokey C	reek Event F	ile Summ	ary					
		Time to Peak	Discharge		Time to Pea	ak Depth		Time to Pe	ak Stage		Time to Peal	c F. Slope	
				Peak			Peak			Peak			
Date	Time	Date	Time	Discharge	Date	Time	Depth	Date	Time	Stage	Date	Time	F. Slope
mm/dd/yyyy	hh:mm:ss	mm/dd/yyyy	hh:mm:ss	(cms)	mm/dd/yyyy	hh:mm:ss	(m)	mm/dd/yyyy	hh:mm:ss	(m)	mm/dd/yyyy	hh:mm:ss	
Initial	Initial												
01/01/2005	00:00:00	01/01/2005	02:26:00	0.50	01/01/2005	02:26:00	0.25	01/01/2005	02:26:00	28.09	03/01/0000	00:00:00	1.52E-03
01/02/2005	00:00:00	01/02/2005	04:30:55	1.70	01/02/2005	04:39:15	0.50	01/02/2005	04:39:15	28.34	01/02/2005	02:34:15	1.49E-03
05/19/2005	00:00:00	05/18/2005	23:58:40	0.50	05/18/2005	23:58:40	0.25	05/18/2005	23:58:40	28.10	05/18/2005	23:58:40	1.49E-03
03/26/2006	00:00:00	03/25/2006	04:20:00	0.51	03/25/2006	04:20:00	0.24	03/25/2006	04:20:00	28.07	03/26/2006	04:11:20	1.67E-03
07/15/2006	00:00:00	07/15/2006	02:08:22	31.27	07/15/2006	02:16:18	1.39	07/15/2006	02:16:18	29.21	07/15/2006	00:29:41	2.16E-03
04/03/2007	00:00:00	04/03/2007	06:41:36	1.69	04/03/2007	06:41:36	0.33	04/03/2007	06:41:36	28.03	04/03/2007	06:16:30	3.10E-03
02/11/2008	00:00:00	02/10/2008	23:58:26	0.50	02/10/2008	23:58:26	0.22	02/10/2008	23:58:26	27.84	02/11/2008	08:29:22	2.95E-03
07/13/2008	00:00:00	07/13/2008	01:33:35	42.98	07/13/2008	01:33:35	1.46	07/13/2008	01:33:35	29.08	07/13/2008	00:24:23	3.40E-03
12/30/2008	00:00:00	12/29/2008	04:36:40	0.51	12/29/2008	04:36:40	0.22	12/29/2008	04:36:40	27.77	12/29/2008	04:36:40	3.24E-03

Table E.4.	Smokev	Creek event	file summary.	$cms = m^3/s$.
1 abic 1.4.	Smokey	CICCR CVCIII	me summary.	cms = m/s.

	Smokey Creek Event File Summary										
		Storm event generated sediment yield			Cumulative sediment yield						
Date	Time	Silt YLD	Sand YLD	Gravel YLD	Total YLD	Silt YLD	Sand YLD	Gravel YLD	Total YLD		
mm/dd/yyyy	hh:mm:ss	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)		
Initial	Initial										
01/01/2005	00:00:00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
01/02/2005	00:00:00	9.10E+00	4.07E-41	0.00E+00	9.10E+00	9.08E+00	4.07E-41	0.00E+00	9.08E+00		
05/19/2005	00:00:00	2.07E+00	0.00E+00	0.00E+00	2.07E+00	3.99E+03	5.70E+02	3.33E-02	4.56E+03		
03/26/2006	00:00:00	7.84E-01	0.00E+00	0.00E+00	7.84E-01	1.18E+04	1.39E+03	7.75E+01	1.33E+04		
07/15/2006	00:00:00	2.25E+02	1.42E-01	0.00E+00	2.25E+02	1.39E+04	1.47E+03	8.08E+01	1.54E+04		
04/03/2007	00:00:00	3.65E+01	5.44E-02	0.00E+00	3.66E+01	2.22E+04	6.43E+03	6.17E+02	2.92E+04		
02/11/2008	00:00:00	2.08E+00	0.00E+00	0.00E+00	2.08E+00	2.54E+04	6.85E+03	7.56E+02	3.30E+04		
07/13/2008	00:00:00	5.40E+01	1.36E+01	4.73E-02	6.76E+01	2.97E+04	7.80E+03	8.48E+02	3.83E+04		
12/30/2008	00:00:00	1.30E+00	0.00E+00	0.00E+00	1.30E+00	3.15E+04	8.28E+03	9.66E+02	4.08E+04		

Table E.4. Smokey Creek event file summary (*continued*). Tons are metric tons.

Smokey Creek Event File Summary														
			Cross section	onal chang	es	Chan	Channel widths Bank Heig		Heights	ghts BED MATERIAL				
		Bed	Cumulative	Lat	Cumulative									
Date	Time	Change	bed change	Change	Lat change	Bottom	Floodplain	Left	Right	D16	D50	D84	D90	Dmean
mm/dd/yyyy	hh:mm:ss	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(mm)	(mm)	(mm)	(mm)	(mm)
Initial	Initial					16.16	31.00	2.64	3.16	44	75	108	115	70
01/01/2005	00:00:00	0.00	0.00	0.00	0.00	16.16	31.00	2.64	3.16	44	75	108	115	70
01/02/2005	00:00:00	0.00	0.00	0.00	0.00	16.16	31.00	2.64	3.16	44	75	108	115	70
05/19/2005	00:00:00	0.00	0.01	0.00	0.09	16.25	31.00	2.63	3.15	32	70	105	113	36
03/26/2006	00:00:00	0.00	-0.02	0.00	0.09	16.25	31.00	2.65	3.18	0.19	68	104	113	19
07/15/2006	00:00:00	0.00	-0.02	0.00	0.09	16.25	31.00	2.66	3.18	0.22	70	105	113	23
04/03/2007	00:00:00	0.00	-0.13	0.00	0.36	16.52	31.67	2.76	3.34	0.10	38	94	106	4
02/11/2008	00:00:00	0.00	-0.22	0.00	0.36	16.52	31.67	2.84	3.43	28	70	106	113	27
07/13/2008	00:00:00	0.00	-0.22	0.00	0.36	16.52	31.67	2.84	3.43	0.25	71	106	114	22
12/30/2008	00:00:00	0.00	-0.29	0.00	0.36	16.52	31.67	2.92	3.50	30	73	107	114	30

Table E.4. Smokey Creek event file summary (continued).

APPENDIX F:

Statistical Correlations Between AnnAGNPS Model Output and Streambed Fine Sediment

Correlations between AnnAGNPS Model Output and Streambed Fine Sediment

It was the objective of this statistical analysis to examine correlations of the measured sediment characteristics (percentage of clays, silts, sands, and gravels) obtained from a particle (grain) size particle analysis of 33 different streambed sediment deposition points, collected at all four study subwatersheds with that of the predicted sediment yield in terms of total weight and percentages of clays, silts, and sands for each location. The different combinations of variables that represent the measured stream bed sediment properties by particle grain size analysis and the annual average value of sediment yield for the drainage area above where the streambed sediment sample was taken can be seen in Table F.1. These variables were placed into the JMP Statistical Software to determine if a correlation exists between the bed sediment found in stream deposition points and the average annual sediment yield on the hillslopes. Note that in Table 19, there are average annual sediment yield variables for years 2006, 2007, and the combination of years 2006 and 2007. The streambed sediment was collected in the field during the spring, summer, and fall 2007, and it is thought that these stream bed sediment depositional points contain a historical amount of different amounts of sediment yield for a variable amount of time. Since the stream bed sediment was collected during the months of February through October 2007, the average annual sediment yield values were included.

Initially, the variables of interest were checked for outliers and normality. It was noticed that many of the variables used did not seem to represent a strong normal distribution; therefore, a nonparametric analysis was used. From the normal distribution plots, the JMP program suggested four different sites with possible outliers by box plot whiskers analysis. No outliers were declared from this pre-analysis assessment. All the measured and predicted variables were then placed in a nonparametric multivariate analysis to be used for the distinction of obvious correlations between variables. From the multivariate analysis, there was little correlation noticed among the stream bed sediment and the hillslope sediment yield variables. By comparing the measured with the predicted variables, Table F.2 was created to show the top 35 combinations with some correlation. In Table F.2, the Spearman's Rho represents the correlation between a combination of variables. The closer Spearman's Rho is to 1.0 or -1.0, the better the correlation. From using the multivariate analysis, there are no strong correlations independently between the measured and predicted variables. Also notice that the smallest p-value is just greater than 0.05 for the combination of different variables. Since there is no combination of measured and predicted variables that have a p-value less than 0.05, there are no significant variables that stand alone for the sediment collected in stream deposition points and the properties of hillslope sediment yield.

From analyzing these sediment deposits and hillslope sediment yield, some slightly significant relationships were observed between the modeled sediment output and instream streambed sediment characteristics. To further analyze the streambed sediment deposit and yield properties with the best correlation and relationship, a Stepwise Regression Model was used in JMP to see if there was a better relationship between the measured sediment deposit characteristics and the sediment yield when multiple variables are used together. Using the stepwise regression model through standard least squares analysis, four sediment yield variables produced from the AnnAGNPS model output created a significant relationship with pairs of different stream bed sediment deposit variables.

Table F.1.	Statistical variables used in correlation analysis among sediment characteristics
	between measured and modeled output.

VARIABLES	DEFINITIONS
Site	Site Number of Analysis
Wtashd	Watershed of Site
Area	Drainage Area in Hectares
RGA	Rapid Geomorphic Assessment Score (1-36)
D50	Median Grain Size Diameter from Pebble Count (mm)
D84	84th Largest Grain Size Diameter from Pebble Count (mm)
MP-Cl	Particle Size Distribution - Measured Percent Clay (%)
MP-Si	Particle Size Distribution - Measured Percent Silt (%)
MP-Sa	Particle Size Distribution - Measured Percent Sand (%)
MP-Gr	Particle Size Distribution - Measured Percent Gravel (%)
MS-Cl	Particle Size Distribution - Measured Slope
MS-Si	Particle Size Distribution - Measured Slope
MS-Sa	Particle Size Distribution - Measured Slope
MS-Gr	Particle Size Distribution - Measured Slope
MP-ClSi	Particle Size Distribution - Measured Percent Clay & Silt (%)
MP-SiSa	Particle Size Distribution - Measured Percent Silt & Sand (%)
MP-ClSiSa	Particle Size Distribution - Measured Percent Clay, Silt, & Sand (%)
MP-Cl/Si	Particle Size Distribution - Measured Percent Ratio of Clavs to Silts
MP-Cl/Sa	Particle Size Distribution - Measured Percent Ratio of Clays to Sands
MP-Cl/Gr	Particle Size Distribution - Measured Percent Ratio of Clays to Gravels
MP-Si/Cl	Particle Size Distribution - Measured Percent Ratio of Silts to Clays
MP-Si/Sa	Particle Size Distribution - Measured Percent Ratio of Silts to Sands
MP-Si/Gr	Particle Size Distribution - Measured Percent Ratio of Silts to Gravels
MP-Sa/Cl	Particle Size Distribution - Measured Percent Ratio of Sands to Clavs
MP-Sa/Si	Particle Size Distribution - Measured Percent Ratio of Sands to Silts
MP-Sa/Gr	Particle Size Distribution - Measured Percent Ratio of Sands to Gravels
MP-Gr/Cl	Particle Size Distribution - Measured Percent Ratio of Gravels to Clavs
MP-Gr/Si	Particle Size Distribution - Measured Percent Ratio of Gravels to Silts
MP-Gr/Sa	Particle Size Distribution - Measured Percent Ratio of Gravels to Sands
06-PP-Cl	2006 Annual Average Sediment Yield Predicted Percent Clay (%)
06-PP-Si	2006 Annual Average Sediment Yield Predicted Percent Silt (%)
06-PP-Sa	2006 Annual Average Sediment Yield Predicted Percent Sand (%)
06-PP-ClSi	2006 Annual Average Sediment Yield Predicted Percent Clay & Silt (%)
06-PP-SiSa	2006 Annual Average Sediment Yield Predicted Percent Silt & Sand (%)
06-PW-C1	2006 Annual Average Sediment Vield Predicted Weight of Clay (Mg)
06-PW-Si	2006 Annual Average Sediment Vield Predicted Weight of Silt (Mg)
06-PW-Sa	2006 Annual Average Sediment Vield Predicted Weight of Sand (Mg)
06-PW-TSY	2006 Predicted Annual Average Sediment Yield (Mg)
06-P-TSY/A	2006 Predicted Annual Average Sediment Yield (Mg/)
06-PW-ClSi	2006 Annual Average Sediment Yield Predicted Weight of Clays and Silts (Mg)
06-PW-SiSa	2006 Annual Average Sediment Yield Predicted Weight of Silts and Sands (Mg)
07-PP-C1	2007 Annual Average Sediment Yield Predicted Percent Clay (%)
07-PP-Si	2007 Annual Average Sediment Yield Predicted Percent Silt (%)

VARIABLES	DEFINITIONS
07-PP-Sa	2007 Annual Average Sediment Yield Predicted Percent Sand (%)
07-PP-ClSi	2007 Annual Average Sediment Yield Predicted Percent Clay & Silt (%)
07-PP-SiSa	2007 Annual Average Sediment Yield Predicted Percent Silt & Sand (%)
07-PW-Cl	2007 Annual Average Sediment Yield Predicted Weight of Clay (Mg)
07-PW-Si	2007 Annual Average Sediment Yield Predicted Weight of Silt (Mg)
07-PW-Sa	2007 Annual Average Sediment Yield Predicted Weight of Sand (Mg)
07-PW-TSY	2007 Predicted Annual Average Sediment Yield (Mg)
07-P-TSY/A	2007 Predicted Annual Average Sediment Yield / Drainage Area (Mg/ha)
07-PW-ClSi	2007 Annual Average Sediment Yield Predicted Weight of Clays and Silts (Mg)
07-PW-SiSa	2007 Annual Average Sediment Yield Predicted Weight of Silts and Sands (Mg)
06+07-PW-Cl	2006 and 2007 Annual Average Sediment Yield Predicted Weight of Clay (Mg)
06+07-PW-Si	2006 and 2007 Annual Average Sediment Yield Predicted Weight of Silt (Mg)
06+07-PW-Sa	2006 and 2007 Annual Average Sediment Yield Predicted Weight of Sand (Mg)
06+07-PW-	2006 and 2007 Predicted Annual Average Sediment Yield (Mg)
TSY	
06+07-P-	2006 and 2007 Pradicted Annual Average Sediment Vield / Drainage Area (Ma/ha)
TSY/A	2000 and 2007 Tredicted Annual Average Sediment Tield / Dranlage Area (Mg/Ila)

 Table F.1. Continued: Statistical variable definitions......

The four different dependant variables were the predicted sediment yield weight of clay (PW-Cl), predicted sediment yield weight of silt (PW-Si), predicted total sediment yield weight (PW-TSY), and the predicted weight of clays and silts combined (PW-ClSi). Each of these dependant variables contained a significant relationship with a combination of two predictor variables measured in the particle grain size analysis of the streambed sediment deposits. Of the stream bed sediment variables that established a significant relationship with different average annual hillslope sediment yield variables, the particle size distribution slopes for clays, silts, sands, and gravels did not provide a significant correlation or relationship with annual average hillslope sediment yield. Therefore, the essential stream bed sediment variables are the percentages of different sediment size classifications found in each sample. The multivariate analysis of these four dependant variables with their related independent measured variables can be seen in Figures F.1 through F.4. Using the JMP Stepwise Regression tool, the PW-Cl, PW-Si, PW-TSY, and PW-ClSi for years 2006, 2007, and the combination of the two were used to define a relationship with the set of measured particle size classifications found at each sediment deposition point in the stream. Interestingly enough, the same measured variables for the streambed sediment deposits contained a similar relationship to the PW-Cl, PW-Si, PWTSY, and PW-ClSi for both of the years 2006 and 2007, as well as the combination of the two. Since these relationships between the measured stream bed sediment and the predicted sediment yield are similar for the three sets of years, it was decided that this statistical analysis would primarily focus on the 2006 AnnAGNPS sediment yield variables that showed an association with a few of the measured stream bed sediment deposit variables. It is also worth noting that since the fine bed sediment collected in stream deposition points was obtained during the middle of 2007 and the sediment deposits should contain historical properties of hillslope and channel erosion, the 2006 sediment yield should be a more appropriate time frame to be compared with the measured data. Using the four 2006 predicted sediment yield variables in a regression analysis, a pair of measured sediment deposit characteristics seemed to provide a better relationship than the single

combination of the measured versus predicted sediment values previously seen in the multivariate analysis. Figures F.5 through F.12 show the different model relationships observed by regression analysis for predicted average annual sediment yield and various measured sediment deposit characteristics.

Number	Variable	by Variable	Spearman p	Prob> p
	06+07-PW-Cl	MP-Gr/Sa	-0.341	0.052
	06+07-PW-Cl	MP-Gr/Si	-0.341	0.052
	06+07-PW-Cl	MP-Sa/Gr	0.341	0.052
	06+07-PW-Cl	MP-SiSa	0.335	0.057
	07-PW-Cl	MP-Gr/Sa	-0.335	0.057
	07-PW-Cl	MP-Gr/Si	-0.335	0.057
	07-PW-Cl	MP-Sa/Gr	0.335	0.057
	07-PW-Cl	MP-Si/Gr	0.334	0.057
	06-PW-Cl	MP-Gr/Sa	-0.332	0.059
	06-PW-Cl	MP-Gr/Si	-0.332	0.059
	06-PW-Cl	MP-Sa/Gr	0.332	0.059
	06+07-PW-Cl	MP-Gr	-0.332	0.059
	06+07-PW-Cl	MP-ClSiSa	0.329	0.062
	07-PW-Cl	MP-SiSa	0.329	0.062
	07-PW-Cl	MP-Gr	-0.326	0.064
	06-PW-Cl	MP-SiSa	0.326	0.065
	06+07-PW-Cl	MP-Sa	0.325	0.065
	06+07-PW-Cl	MS-Sa	0.325	0.065
	06-PW-Si	MP-Gr/Sa	-0.324	0.066
	06-PW-Si	MP-Gr/Si	-0.324	0.066
	06-PW-Si	MP-Sa/Gr	0.324	0.066
	07-PW-Cl	MP-ClSiSa	0.323	0.067
	06-PW-Cl	MP-Gr	-0.322	0.067
	07-PW-TSY	MP-Si/Gr	0.322	0.068
	07-PP-ClSi	MP-Si/Gr	0.322	0.068
	06+07-PW-Cl	MP-Si/Gr	0.320	0.069
	07-PP-SiSa	MP-Si/Gr	0.320	0.070
	06-PW-Si	MP-Si/Gr	0.320	0.070
	06-PW-Cl	MP-ClSiSa	0.319	0.070
	07-PW-TSY	MP-Gr/Sa	-0.319	0.071
	07-PW-TSY	MP-Gr/Si	-0.319	0.071
	07-PW-TSY	MP-Sa/Gr	0.319	0.071
	06-PW-TSY	MP-Si/Gr	0.319	0.071
	07-PW-Cl	MP-Sa	0.317	0.072
	07-PW-Cl	MS-Sa	0.317	0.072

 Table F.2.
 Results of nonparametric multivariate analysis with sediment data: A summary of significant correlations.

Figure F.1. Nonparameteric multivariate results for 06-PW-Cl.

Figure F.2. Nonparameteric multivariate results for 06-PW-Si.

Figure F.3. Nonparameteric multivariate results for 06-PW-TSY.

Figure F.4. Nonparameteric multivariate results for 06-PW-ClSi.

Response 06	-PW-CI							
Whole Mod	el Transforma	- T						
Actual by P	redicted Pl	61						
3300			11					
3000-			11					
1 2500-			11/	1				
22000-	0.00	1	//					
Q 1500-		11	/					
\$ 1000	1	//						
14	11							
~ 500-	1			11				
0-	11							
-500-			1-1-1-	4.1				
-500	8 500 10	0015002	00025003000					
	08-PW-0	Predict	ed P<0001					
	RSq=0	69 RMS	E-385.09					
	1.0.7.1	1.164 1.274	2001 2011	-				
Part of Laboration	CPCL.							
Summary of	I FIF							
RSquare			0.69300	34				
RSouare Add	C		0.67255	50				
Root Mean 5	quare Error		386.09	15				
Mean of Res	Donse		420.490	20				
Observations	i (or Sum W	(ms)	33					
	100 C							
Analysis of	Variance					55 Y		
Source	DF	Sum	of Squares	Mean Sq	uat∈	F Patto		
Model	2	10	095969	504791	85	33.8638		
Entor	30	4	472024	14906	17	Prob > F		
C. Total	32	14	567993			- 30001		
	1450.000							
Parameter I	stimates				-		and there	
Term	Estin	nate	Sta Error	t Ratto	PT00 1	Lower 95%	Upper 95%	VIF
mercept	154.1	322	2.03989	220	0.0015	105.78184	402.48271	- income
MP-CI	-102.	0.22	394/3.45	-4.11	0.0003	-242 (29.5	-81490.25	5.4000464
MP-SUGT	1481	9.32	2051.528	1.19	<.0001	106/0.586	13908.123	5.4000464
Durkin Wa	tran.							
Durbin Wa	arcon	Mumber	ofObs	Arto Correl	stion			
The other AA	aradit	-sentioer	ST CAST.	Autocories	e du d			
1 96194	106			1 1 1 1 M 1 1 M 1 M 1 M 1 M 1 M 1 M 1 M				

Figure F.5. Average annual sediment yield 2006 clay weigh regression model.

Bivariate Fit of Residual 06-PW-CI By MP-CL

Bivariate Fit of Residual 06-PW-C1By MP-Si/Gr

Figure F.6. Average annual sediment yield 2006 clay weight residual plots.
Whole Med	0-PW-51							
Actual by P	redicted Pl	or						
7000 -	reakied 11			-				
5000-			11					
- 5000			11					
1 1000	1.00	1	///					
A 1000-		11	//					
1000-	10.3	11	/					
£ 2000-	. 1	/						
C 1000-	11			-				
0-	11							
-1000								
-100	0 0 100020	0030064	100050006000					
	08-RW-	Si Presict	ted P+.0001					
	RSq-I	165 RM3	E-871.31					
	-							
Summers o	E Teste							
Summary o	Fit							
Summary o RSquare	f Fit		0.65363	12				
Summary o RSquare RSquare Ad	f Fit.		0.65360	11 3				
Summary o RSquare RSquare Ad Root Mean	l Fit. J Square Eiroj		0.65360 0.6305 871.3	12 3. 1.				
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res	l Fit j Square Eiroj spinse		0.65360 0.6305 8713 642.80	12 3- 1,				
Summary o RSquare RSquare Ad Root Mean Mean of Res Observation	f Fit J Square Error sponse s (or Sum W	r Vg15j	0.55360 0.6305 871.3 642.800 33	12 3. 1. 19				
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of	j Square Erroj sponse s (or Sum V Variance	r Vgisj	0.65360 0.6305 8713 642.800 33	12 3. 1. 19				
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of Source	j Square Error sponse s (or Sum V Variance DF	r 7grs) Stum	0.65360 0.6305 8713 642.800 33 of Squares	12 3 1 19 Mean Sq	usre	F Ratio		
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of Source Model	J Fit Square Error sponse s (or Sum W Variance DF 2	r 7grsj Stum 42	0.65360 0.6305 871.3 642.800 33 of Squares 977593	12 3 1, 29 Mean Sq 214287	uare 97	F Ratio 28 3052		
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of Source Model Error	j Square Error sponse s (or Sum W Variance DF 2 30	7g15) Stum (42 22	0.65363 0.6305 871.3 642.80 33 of Squares 977593 77593	12 3 1, 29 Mean Sq 214887 759181	uare 97	F Ratio 28 3052 Prob > F		
Summary o RSquare RSquare Ad Root Mean 3 Mean of Res Observation Analysis of Source Model Error C. Total	j Square Erroj sponse s (or Sum W Variance DF 2 30 32	5 Stum 42 22 65	0.65380 0.6305 87131 642.801 33 of Squares 977593 775435 753028	12 3 1 99 Mean Sq 214887 759181	usre 97 17	F Ratio 28 3052 Prob ≥ F ≅,0001		
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of Source Model Error C. Total Parameter 1	j Square Error sponse s (or Sum W Variance DF 2 30 32 Estimates	7g15) Sturn (42 22 65	0.65360 0.6305 8713 642.800 33 of Squares 977593 775435 753028	12 3 1 29 Mean Sq 214887 759181	uare 97 17	F Ratio 28 3052 Prob > F ≈,0001		
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of Source Model Error C. Total Parameter 1 Term	j Square Error sponse s (or Sum W Variance DF 2 30 32 Estimates Esti	7grs) Stum (42 22 65 mare	0.65360 0.6305 871.3 642.80 33 of Squares 977593 77593 775435 753028 Std Error	12 3 19 Mean Sq 214287 759181 t Ratic	uare 97 17 Prob-in	F Ratio 28 3052 Prob ≥ F ≥,0001 Lower 95%	Upper 95%	VIE
Summary o RSquare RSquare Ad Root Mean 3 Mean of Res Observation Analysis of Source Model Error C. Total Parameter 1 Term Intercept	j Square Error spinise s (or Sum W Variance DF 2 30 32 Estimates Estimates Estimates	7g15) Stum (42 22 65 mate 10424	0.65360 0.6305 87131 642.801 33 of Squares 977593 775435 753028 Std Error 183.0249	11 3 1 19 214887 759181 т Ratio 3.92	uare 97 17 Prob-iti 0.0005	F Ratio 28 3052 Prob ≥ F ≈,0001 Lower 95% 344,21753	Upper 95% 1091.791	VIE
Summary o RSquare RSquare Ad Root Mean 3 Mean of Res Observation Analysis of Source Modél Error C. Total Parameter 1 Term Intercept MP-Si/Sa	j Square Error sponse s (or Sum W Variance DF 2 30 32 Estimates Esti 718.(-291)	5 5tum (42 22 65 mate 10424 25.19	0.65360 0.6305 87131 642.801 33 of Squares 977593 775435 753028 Std Error 183.0249 8535.869	12 3 1 19 214887 759181 t Ratio 3.92 -3.41	uare 97 17 Prob-(t) 0.0005 0.0019	F Ratio 28 3052 Prob ≥ F ≥,0001 Lower 95% 344,21753 -46557,76	Upper 95% 1091.791 -11692.62	VIF 2,6318192
Summary o RSquare RSquare Ad Root Mean 5 Mean of Res Observation Analysis of Source Model Error C. Total Parameter 1 Term Intercept MP-Si/Sa MP-Si/Sr	j Square Error sponse s (or Sum W Variance DF 2 30 32 Estimates Estimates 2 32 2 2 30 32 2 2 30 32 2 2 30 32 2 2 2	r Sturn (42 22 65 10424 25.19 7.061	0.65360 0.6305 8713 642.800 33 of Squares 977593 775435 753028 Std Error 183.0249 8535.869 3994.983	12 3 1 29 Mean Sq 214887 759181 t Radio 3.92 -3.41 6.82	paste 97 17 17 0 0005 0 0019 <.0001	F Ratio 28 3052 Prob > F <,0001 Lower 95% 344,21753 -46557,76 19083.217	Upper 95% 1091.791 -11692.62 35405 905	VIF 2,6318193 2,6318193
Summary o RSquare RSquare Ad Root Mean 3 Mean of Res Observation Analysis of Source Model Error C. Total Parameter 1 Term Intercept MP-Si/Sa MP-Si/Gr	j Square Error spinise s (or Sum W Variance DF 2 30 32 Estimates Estimates 2 30 32 Estimates 2 30 32 Estimates 2 2 30 32	7g15) Stum (42 22 65 mate 10424 25,19 7.061	0.65360 0.6305 87131 642.800 33 of Squares 977593 775435 753028 Std Error 183.0249 8535.869 3994.983	12 3 19 29 214287 759181 759181 1 5.91 -3.41 6.82	uare 97 17 Prob-it 0.0005 0.0019 <.0001	F Ratio 28 3052 Prob ≥ F ≥,0001 Lower 95% 344,21753 -46557,76 19083,217	Upper 95% 1091.791 -11692.62 35405 905	VIF 2,6518190 1,6318190
Summary o RSquare RSquare Ad Root Mean 3 Mean of Res Observation Analysis of Source Model Error C. Total Parameter 1 Term Intercept MP-Si/Sa MP-Si/Sa MP-Si/Sa	j Square Error sponse s (or Sum W Variance DF 2 30 32 Estimates Estimates 2 30 32 Estimates 2 2 30 32 Stan 2 2 2 2 2 2 2 4 5 5 0 32	7g15) Stum (42 22 65 mate 10424 25.19 7.061 Winnber	0.65360 0.6305 87131 642.801 33 of Squares 977593 775435 753028 Std Error 183.0249 8535.869 3994.983	12 3 19 29 214287 759181 TRatic 3.91 -3.41 6.82 AutoCorreli	uare 97 17 Prob-it 0.0005 0.0019 <.0001	F Ratio 28 3052 Prob ≥ F ≅,0001 Lower 95% 344,21753 -46557,76 19083.217	Upper 95% 1091.791 -11692.62 35405 905	VIF 2,6518190 2,6318190

Figure F.7. Average annual sediment yield 2006 silt weigh regression model.

Bivariate Fit of Residual 06-PW-Si By MP-Si/Sa

Bivariate Fit of Residual 06-PW-Si By MP-Si/Gr

Figure F.8. Average annual sediment yield 2006 silt weight residual plots.

Figure F.9. Average annual sediment yield 2006 total yield regression model.

Figure F.10. Average annual sediment yield 2006 total yield residual plots.

sector in the sector is the se	-F W-C13							
Whole Mod	el							
Actual by P	redicted E	lot		-				
12000			11	7				
10000 -			11					
3 3000-			11					
A ODGO	÷.,		1/					
- 000B		11						
\$ 4000-	10.	111						
\$	- 1	11						
10 2000-	11			-				
D-	11							
2000	1							
-2000	00 0 200	0 4000 60	000010000 000	1				
	76	EW-CISI	Prenicten					
	Br 0001	Straf 50	RMSE-TOIL B					
	Lander	(redeline are	100000-1219-3	And the second se				
Summary o RSquare RSquare Ad	fFit		0.68839	6				
Summary o RSquare RSquare Ad Root Mean Mean of Res	f Fit Square Erro polise	or	0.68839 0.66752 1214.85 1263 29	6 3 7				
Summary o RSquare RSquare Ad Root Mean Mean of Res Observation	f Fit Square Err sponse s (or Sum 1	or Wgts)	0.68839 0.66752 1214,85 1263 29 33	96 3 17 11				
Summary o RSquare RSquare Ad Root Mean 9 Mean of Res Observation Analysis of	f Fit Square Erro ponse s (or Sum) Variance	or Wgts)	0.68839 0.66762 1214.85 1263 29 33	6 3 7 1				
Summary o RSquare RSquare Ad Root Mean Mean of Res Observation Analysis of Source	f Fit Square Erro ponse s (or Sum ' Variance DF	or Wgts) Sum	0.68839 0.66752 1214.85 1263 29 33 of Squares	6 3 7 1 Mean Sq	uare 3	P Rano		
Summary o RSquare RSquare Ad Root Mean 9 Mean of Res Observation Analysis of Source Model	f Fit Square Erro ponse s (or Sum DF 2	or Wgtsj Sum 97	0.68839 0.66762 1214.85 1263 29 33 of Squares 1815431	6 3 7 1 Mesn Sq 489077	uare 1 16 3	P Rano 3.1380		
Summary o RSquare RSquare Ad Root Mean Mean of Res Observation Analysis of Source Model Error	f Fit Square Erro pouse s (or Sum) Variance DF 2 30	or Wgts) Sum 97 44	0.68839 0.66752 1214,85 1263 29 33 of Squares 1215431 1276352	6 3 7 1 Mean Sq 489077 147587	uare 1 16 3 8.4 P	P Rano (3.1380 rob > F		
Summary o RSquare RSquare Ad Root Mean Mean of Res Observation Analysis of Source Model Error C. Total	f Fit Square Erro ponse s (or Sum ' Variance DF 2 30 32	or Wgts) Sum 97 44 14	0.68839 0.66762 1214,85 1263 29 33 of Squares 1815431 1276352 2091783	6 3 7 1 1 Mean Sq 489077 147587	uare 1 16 3 8,4 P	F Rano 3.1380 rob > F <0001		
Summary o RSquare RSquare Ad Root Mean 9 Mean of Res Observation Analysis of Source Model Error C. Total Parameter	f Fit Square Erro ponse s (or Sum) Variance DF 2 30 32 Estimates	or Wgts) Sum 97 44 14	0.68839 0.66762 1214.85 1263 29 33 of Squares 1215431 1276352 2091783	6 3 7 1 1 Mean So 489077 147587	uare 1 16 3 2.4 P	F Rano 3.1380 rob > F <0001		
Summary o RSquare RSquare Ad Root Mean 9 Mean of Res Observation Analysis of Source Model Error C. Total Parameter Term	f Fit Square Erro ponse s (or Sum) Variance DF 2 30 32 Estimate: Est	or Wgts) Sum 97 44 14: imate	0.68839 0.66762 1214.85 1263 29 33 of Squares 1215431 1276352 2091783 Std Error	6 3 7 1 1 1 1 1 4 8 90 7 7 1 4 7 5 8 7 (1 4 7 5 8 7 (1 4 5 8 7 (1 5 5 7 (1 5 5 5 7 (1 5 5 5 (1 5 5 5 (1 5 5 (5 5 5 5 (5 5 (5 5 5 5	uare 1 16 3 8.4 P Prob⇒t	F Rano 3.1380 rob > F <0001 Lower 95%	Upper 95%	VIE
Summary o RSquare RSquare Ad Root Mean 9 Mean of Res Observation Analysis of Source Model Error C. Total Parameter Term Intercept	f Fit Square Erro ponse s (or Sum) Variance DF 2 30 32 Estimates Est 742.	or Wgts) Sum 97 44 14: 14: 14:	0.68839 0.66752 1214,85 1263 29 33 of Squares 1215431 1276352 2091783 Std Error 228.5646	6 3 7 1 1 1 489077 147587 t Ratio 3.25	uare 1 16 3 8.4 P Prob=t 0.0028	F Rano 3.1380 rob > F <0901 Lower 95% 276,19744	Upper 95% 1209.7799	VIF
Summary o RSquare RSquare Ad Root Mean S Mean of Res Observation Analysis of Source Model Error C. Total Parameter Term Intercept MP-CI	f Fit Square Erro pouse s (or Sum) Variance DF 2 30 32 Estimate: Est 742, -50(or Sum 97 44 142 98869 0024,1	0.68839 0.66752 1214,85 1263 29 33 of Squares 1215431 1276352 2091783 Std Error 228,5646 124211,3	6 3 7 1 1 1 489077 147587 t Ratio 3.25 -4.03	uare 3 16 3 8.4 P Prob≥t 0.0028 0.0004	P Ratio 3.1380 rob > F <0001 Lower 95% 276,19744 -753697,4	Upper 95% 1209.1799 -246350.9	VIF 3.4650464
Summary o RSquare RSquare Ad Root Mean 9 Mean of Res Observation Analysis of Source Model Error C. Total Parameter Term Intercept MP-C1 MP-Si/Gr	f Fit Square Erro ponse s (or Sum V Variance DF 2 30 32 Estimates Fat 742, -500 4600	or Sum 97 44 14: 98869 0024.1 01,313	0.68839 0.66762 1214.85 1263 29 33 of Squares 1215431 1276352 2091783 Std Error 228.5646 124211.3 6392.293	6 3 7 1 1 1 1 1 4 7 5 8 7 1 4 7 5 8 7 20	uare 1 16 3 8,4 P Prob=t 0.0028 0.0004 <.0001	F Rano (3.1380 rob > F <0001 Lower 95% 276,19744 -753697.4 32946,509	Upper 95% 1209.7799 -246350.9 59056.117	VIF 3.4660464 3.4660464
Summary o RSquare RSquare Ad Root Mean S Mean of Res Observation Analysis of Source Model Error C. Total Parameter Term Intercept MP-CI MP-Si/Gr	f Fit Square Em- pouse s (or Sum) Variance DF 2 30 32 Estimate: Est 742, -50(460)	or Sum 97 44 142 98869 0024,1 01,313	0.68839 0.66762 1214,85 1263,29 33 of Squares 1815431 1276352 2091783 Std Error 228,5646 124211,3 6392,293	6 3 7 1 1 1 489077 147587 (Ratio 3.25 -4.03 7.20	uare 3 16 3 8.4 P Prob≥t 0.0028 0.0004 <.0001	F Rano 3.1380 rob > F <0001 Lower 95% 276,19744 -753697,4 32946,509	Upper 95% 1209.7799 -246350.9 59056.117	VIF 3.4650464 3.4650464
Summary o RSquare RSquare Ad Root Mean S Mean of Res Observation Analysis of Source Model Error C. Total Parameter Term Intercept MP-CI MP-Si/Gr Durbin-Wa	f Fit Square Em- pouse s (or Sum) Variance DF 2 30 32 Estimates Est 742. -500 4600	or Sum 97 44 142 142 142 142 142 142 142 142 142	0.68839 0.66762 1214,85 1263,29 33 of Squares 1815431 1276352 2091783 Std Error 228,5646 124211,3 6392,293	6 3 7 1 1 1 489077 147587 t Ratio 3.25 -4.03 7.20 AutoCorrel	uare 3 16 3 8.4 P Prob=t 0.0028 0.0004 <.0001	F Rano (3.1380) rob > F <0001 Lower 95% 276,19744 -153697,4 32946,509	Upper 95% 1209.7799 -246350.9 59056.117	VIF 3.4650464 3.4650464

Figure F.11. Average annual sediment yield 2006 clay and silt yield regression model.

Bivariate Fit of 06-PW-CISi By MP-CI

Bivariate Fit of 06-PW-CISi By MP-Si/Gr

Figure F.12. Average annual sediment yield 2006 clay and silt yield residual plots.

After reviewing over all the stepwise standard least squares regression analysis results with the various stream bed sediment deposition properties and the average annual hillslope sediment yield properties, there seems to be a much better correlation and significance for the assembly of multiple variables combined than just one single pair of measured and predicted values as shown summarized in Table F.3.

For the PW-Cl, PW-TSY, and PW-ClSi variables, the two best response variables were the MP-Cl and MP-Si/Gr. With the PW-Si variable, the two response variables were MP-Si/Sa and MP-Si/Gr. The four stepwise regression equations created from the combination of stream bed sediment variables to predict a hillslope sediment yield variable are shown in equations listed below:

06-PW-Cl = 254.13 - 162,109.87(MP-Cl) + 14,819.32(MP-Si/Gr) 06-PW-Si = 718.01 - 29,125.19(MP-Si/Sa) + 27,247.06(MP-Si/Gr) 06-PW-TSY = 798.79 - 512,783.35(MP-Cl) + 46,716.34(MP-Si/Gr) 06-PW-ClSi = 742.99 - 500,024.15(MP-Cl) + 46,001.31(MP-Si/Gr)

Interesting, the measured ratio of silt to gravel seems to be a sediment deposition variable in the four stepwise models that contained an overall and individual p-value that was below 0.05, which showed a significant relationship between the variables placed in the stepwise regression model. Also note that in the four regression models shown, the VIF values were less than 10, which indicated that there were no major multicollinearity problems with the variables used. For all four of the models, the confidence interval does not contain a zero value, which would show that a variable would not have a significant relationship with the other values used in the model.

The best R-square value showed to be 0.69 with the PW-Cl and PW-ClSi, while the lowest R-square value came from the PW-TSY at 0.64. These R-square values show that the sediment

Sediment Yield	Stream Bed	Multivariate		Standard Least Squares Regression			
Response Variable	Sediment Variables	$\operatorname{Spearman}\rho$	$Prob > \rho $	R-Square	F Ratio	Prob > F	
06-PW-C1	MP-Cl	0.1228	0.4961	0.60	22.06	< 0.0001	
	MP-Si/Gr	0.3108	0.0783	0.09	55.80	< 0.0001	
06-PW-Si	MP-Si/Sa	0.3038	0.0856				
	MP-Si/Gr	0.3195	0.0699	0.65	28.31	< 0.0001	
	MD C1	0.1120	0.5200				
06-PW-18Y	MP-CI	0.1139	0.5280	0.64	26.57	< 0.0001	
	MP-Si/Gr	0.3189	0.0705				
06-PW-ClSi	MP-Cl	0.1122	0.5341	0.60	22.14	< 0.0001	
	MP-Si/Gr	0.3112	0.0780	0.09	55.14	< 0.0001	

Table F.3. Summary of statistical relationships for sediment deposition and yield.

data used contains a good bit of variability, which is expected with measuring sediment characteristics. If viewed closely, the standard least squares regression plots reveal a leverage effect due to a possible outlier in the data. It is unclear with the limited amount of data available that this data point is an outlier or is acceptable.

Overall, the statistics of sediment from channel deposition points in the stream with the average annual sediment yield on the hillslope of all the sites contained in all four watersheds show that there is a significant relationship with clays, silts, sands, and gravels. More data would probably produce less variability and possibly a better prediction model with the stream sediment deposits and hillslope sediment yield on an average annual basis.